A protein homodimer is formed by two identical proteins while a protein heterodimer is formed by two different proteins.
Most protein dimers in biochemistry are not connected by covalent bonds. An example of a non-covalent heterodimer is the enzyme reverse transcriptase, which is composed of two different amino acid chains.[1] An exception is dimers that are linked by disulfide bridges such as the homodimeric protein NEMO.[2]
Some proteins contain specialized domains to ensure dimerization (dimerization domains) and specificity.[3]
E. colialkaline phosphatase, a dimer enzyme, exhibits intragenic complementation.[5] That is, when particular mutant versions of alkaline phosphatase were combined, the heterodimeric enzymes formed as a result exhibited a higher level of activity than would be expected based on the relative activities of the parental enzymes. These findings indicated that the dimer structure of the E. coli alkaline phosphatase allows cooperative interactions between the constituent mutant monomers that can generate a more functional form of the holoenzyme. The dimer has two active sites, each containing two zinc ions and a magnesium ion.[8]
↑ Amoutzias, Grigoris D.; Robertson, David L.; Van de Peer, Yves; Oliver, Stephen G. (2008-05-01). "Choose your partners: dimerization in eukaryotic transcription factors". Trends in Biochemical Sciences. 33 (5): 220–229. doi:10.1016/j.tibs.2008.02.002. ISSN0968-0004. PMID18406148.
↑ Hehir, Michael J.; Murphy, Jennifer E.; Kantrowitz, Evan R. (2000). "Characterization of Heterodimeric Alkaline Phosphatases from Escherichia coli: An Investigation of Intragenic Complementation". Journal of Molecular Biology. 304 (4): 645–656. doi:10.1006/jmbi.2000.4230. PMID11099386.
6. Conn. (2013). G protein coupled receptors modeling, activation, interactions and virtual screening (1st ed.). Academic Press.
7. Matthews, Jacqueline M. Protein Dimerization and Oligomerization in Biology. Springer New York, 2012.
8. Hjorleifsson, Jens Gu[eth]Mundur, and Bjarni Asgeirsson. “Cold-Active Alkaline Phosphatase Is Irreversibly Transformed into an Inactive Dimer by Low Urea Concentrations.” Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol. 1864, no. 7, 2016, pp.755–765, https://doi.org/10.1016/j.bbapap.2016.03.016.
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.