OCRL

Last updated
OCRL
PDB 2qv2 EBI.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases OCRL , LOCR, NPHL2, OCRL-1, OCRL1, oculocerebrorenal syndrome of Lowe, inositol polyphosphate-5-phosphatase, OCRL inositol polyphosphate-5-phosphatase, INPP5F, Dent-2, DENT2
External IDs OMIM: 300535; MGI: 109589; HomoloGene: 233; GeneCards: OCRL; OMA:OCRL - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000276
NM_001587
NM_001318784

NM_177215

RefSeq (protein)

NP_000267
NP_001305713
NP_001578

NP_796189

Location (UCSC) Chr X: 129.54 – 129.59 Mb Chr X: 47.91 – 47.97 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Inositol polyphosphate 5-phosphatase OCRL-1, also known as Lowe oculocerebrorenal syndrome protein, is an enzyme encoded by the OCRL gene located on the X chromosome in humans. [5]

Contents

This gene encodes an inositol polyphosphate 5-phosphatase. The responsible gene locus is at Xq26.1. This phosphatase enzyme is in part responsible for regulating membrane trafficking actin polymerization, and is located in several subcellular parts of the trans-Golgi network.

Deficiencies in OCRL-1 are associated with oculocerebrorenal syndrome [6] and also have been linked to Dent's disease. [7] [8]

Related Research Articles

<i>PTEN</i> (gene) Tumor suppressor gene

Phosphatase and tensin homolog (PTEN) is a phosphatase in humans and is encoded by the PTEN gene. Mutations of this gene are a step in the development of many cancers, specifically glioblastoma, lung cancer, breast cancer, and prostate cancer. Genes corresponding to PTEN (orthologs) have been identified in most mammals for which complete genome data are available.

<span class="mw-page-title-main">Phosphatidylinositol 3,4-bisphosphate</span>

Phosphatidylinositol (3,4)-bisphosphate is a minor phospholipid component of cell membranes, yet an important second messenger. The generation of PtdIns(3,4)P2 at the plasma membrane activates a number of important cell signaling pathways.

<span class="mw-page-title-main">Oculocerebrorenal syndrome</span> Medical condition

Oculocerebrorenal syndrome is a rare X-linked recessive disorder characterized by congenital cataracts, hypotonia, intellectual disability, proximal tubular acidosis, aminoaciduria and low-molecular-weight proteinuria. Lowe syndrome can be considered a cause of Fanconi syndrome.

<span class="mw-page-title-main">Nephrin</span> Mammalian protein found in Homo sapiens

Nephrin is a protein necessary for the proper functioning of the renal filtration barrier. The renal filtration barrier consists of fenestrated endothelial cells, the glomerular basement membrane, and the podocytes of epithelial cells. Nephrin is a transmembrane protein that is a structural component of the slit diaphragm. It is present on the tips of the podocytes as an intricate mesh connecting adjacent foot processes. Nephrin contributes to the strong size selectivity of the slit diaphragm, however, the relative contribution of the slit diaphragm to exclusion of protein by the glomerulus is debated. The extracellular interactions, both homophilic and heterophilic—between nephrin and NEPH1—are not completely understood. In addition to eight immunoglobulin G–like motifs and a fibronectin type 3 repeat, nephrin has a single transmembrane domain and a short intracellular tail. Tyrosine phosphorylation at different sites on the intracellular tail contribute to the regulation of slit diaphragm formation during development and repair in pathology affecting podocytes. Podocin may interact with nephrin to guide it onto lipid rafts in podocytes, requiring the integrity of an arginine residue of nephrin at position 1160.

<span class="mw-page-title-main">Dent's disease</span> Medical condition

Dent's disease is a rare X-linked recessive inherited condition that affects the proximal renal tubules of the kidney. It is one cause of Fanconi syndrome, and is characterized by tubular proteinuria, excess calcium in the urine, formation of calcium kidney stones, nephrocalcinosis, and chronic kidney failure.

<span class="mw-page-title-main">Collagen, type IV, alpha 3</span> Protein found in humans

Collagen alpha-3(IV) chain is a protein that in humans is encoded by the COL4A3 gene.

<span class="mw-page-title-main">Multidrug resistance-associated protein 2</span> Protein found in humans

Multidrug resistance-associated protein 2 (MRP2) also called canalicular multispecific organic anion transporter 1 (cMOAT) or ATP-binding cassette sub-family C member 2 (ABCC2) is a protein that in humans is encoded by the ABCC2 gene.

<span class="mw-page-title-main">Myotubularin 1</span> Protein-coding gene in the species Homo sapiens

Myotubularin is a protein that in humans is encoded by the MTM1 gene.

<span class="mw-page-title-main">INVS</span> Protein-coding gene in the species Homo sapiens

Inversin is a protein that in humans is encoded by the INVS gene.

<span class="mw-page-title-main">BBS1</span> Protein

Bardet–Biedl syndrome 1 protein is a protein that in humans is encoded by the BBS1 gene. BBS1 is part of the BBSome complex, which required for ciliogenesis. Mutations in this gene have been observed in patients with the major form of Bardet–Biedl syndrome.

<span class="mw-page-title-main">INPP5B</span> Protein-coding gene in the species Homo sapiens

Type II inositol-1,4,5-trisphosphate 5-phosphatase is an enzyme that in humans is encoded by the INPP5B gene.

<span class="mw-page-title-main">MINPP1</span> Protein-coding gene in the species Homo sapiens

Multiple inositol polyphosphate phosphatase 1 is an enzyme that in humans is encoded by the MINPP1 gene.

<span class="mw-page-title-main">INPP1</span> Protein-coding gene in the species Homo sapiens

Inositol polyphosphate 1-phosphatase is an enzyme that, in humans, is encoded by the INPP1 gene. INPP1 encodes the enzyme inositol polyphosphate-1-phosphatase, one of the enzymes involved in phosphatidylinositol signaling pathways. This enzyme removes the phosphate group at position 1 of the inositol ring from the polyphosphates inositol 1,4-bisphosphate and inositol 1,3,4-trisphophosphate.

<span class="mw-page-title-main">TPTE</span> Protein-coding gene in the species Homo sapiens

Putative tyrosine-protein phosphatase TPTE is an enzyme that in humans is encoded by the TPTE gene.

<span class="mw-page-title-main">PIB5PA</span> Protein-coding gene in the species Homo sapiens

Phosphatidylinositol 4,5-bisphosphate 5-phosphatase A is an enzyme that in humans is encoded by the INPP5J gene.

<span class="mw-page-title-main">Ankyrin-2</span> Protein-coding gene in the species Homo sapiens

Ankyrin-2, also known as Ankyrin-B, and Brain ankyrin, is a protein which in humans is encoded by the ANK2 gene. Ankyrin-2 is ubiquitously expressed, but shows high expression in cardiac muscle. Ankyrin-2 plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in cardiomyocytes, as well as in costamere structures. Mutations in ANK2 cause a dominantly-inherited, cardiac arrhythmia syndrome known as long QT syndrome 4 as well as sick sinus syndrome; mutations have also been associated to a lesser degree with hypertrophic cardiomyopathy. Alterations in ankyrin-2 expression levels are observed in human heart failure.

<span class="mw-page-title-main">ITPR3</span> Protein-coding gene in the species Homo sapiens

Inositol 1,4,5-trisphosphate receptor, type 3, also known as ITPR3, is a protein which in humans is encoded by the ITPR3 gene. The protein encoded by this gene is both a receptor for inositol triphosphate and a calcium channel.

72 kDa inositol polyphosphate 5-phosphatase, also known as phosphatidylinositol-4,5-bisphosphate 5-phosphatase or Pharbin, is an enzyme that in humans is encoded by the INPP5E gene.

<span class="mw-page-title-main">Oliver Wrong</span>

Professor Oliver Murray Wrong was an eminent academic nephrologist and one of the founders of the speciality in the United Kingdom. From a background as a "salt and water" physician, he made detailed clinical observations and scientifically imaginative connections which were the basis of numerous advances in the molecular biology of the human kidney. Wrong himself contributed to much of the molecular work after his own "retirement". He dictated amendments to his final paper during his final illness in his own teaching hospital, University College Hospital (UCH), London. Though academic in his leanings, he was a compassionate physician who established a warm rapport with patients, a link he regarded as the keystone of his research. He belonged to a generation of idealistic young doctors responsible for the establishment of the UK's National Health Service in the post-War years.

<span class="mw-page-title-main">INPP5F</span> Protein-coding gene in the species Homo sapiens

Inositol polyphosphate-5-phosphatase F is a protein that in humans is encoded by the INPP5F gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000122126 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000001173 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: oculocerebrorenal syndrome of Lowe".
  6. Kawano T, Indo Y, Nakazato H, Shimadzu M, Matsuda I (June 1998). "Oculocerebrorenal syndrome of Lowe: three mutations in the OCRL1 gene derived from three patients with different phenotypes". Am. J. Med. Genet. 77 (5): 348–55. doi:10.1002/(SICI)1096-8628(19980605)77:5<348::AID-AJMG2>3.0.CO;2-J. PMID   9632163.
  7. Online Mendelian Inheritance in Man (OMIM): 300555
  8. Hoopes RR, Shrimpton AE, Knohl SJ, et al. (February 2005). "Dent Disease with mutations in OCRL1". Am. J. Hum. Genet. 76 (2): 260–7. doi:10.1086/427887. PMC   1196371 . PMID   15627218.

Further reading