CHKB | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | CHKB , CHETK, CHKL, CK, CKB, CKEKB, EK, EKB, MDCMC, choline kinase beta | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 612395 MGI: 1328313 HomoloGene: 88718 GeneCards: CHKB | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Choline kinase beta (CK), also known as Ethanolamine kinase (EK), Choline kinase-like protein , choline/ethanolamine kinase beta (CKEKB), or Choline/ethanolamine kinase is a protein encoded by the CHKB gene. [5] [6] This gene is found on chromosome 22 in humans. The encoded protein plays a key role in phospholipid biosynthesis. Choline kinase (CK) and ethanolamine kinase (EK) catalyzes the first step in phosphatidylethanolamine biosynthesis. Read-through transcripts are expressed from this locus that include exons from the downstream CPT1B locus. [7] [8] [9]
The CHKB gene is located on the q arm of chromosome 22 at position 13.3 and it spans 4,041 base pairs. [7] The CHKB gene produces a 7 kDa protein composed of 60 amino acids. [10] [11] The structure of the protein has been found to be a homodimer, and forms a heterodimer with the CHKA protein. [9] [8] It has also been found to contain multiple highly conserved domains, such as a Brenner phosphotransferase consensus sequence essential in catalytic function. [12]
The CHKB gene encodes for a key protein in phospholipid biosynthesis. The choline kinase (CK) and ethanolamine kinase (EK) proteins, which are coded by the CHKB gene, catalyze the phosphorylation of choline/ethanolamine in vitro to phosphocholine/phosphoethanolamine. The catalysis is controlled by ATP in the presence of magnesium and ADP, and commits choline to the enzymatic pathway for biosynthesis of phosphatidylcholine. This is the first step in the biosynthesis of phosphocholine/phosphoethanolamine in all animal cells, and is done by the Kennedy pathway. The highly purified choline kinases from mammalian sources and their recombinant gene products have been shown to have ethanolamine kinase activity as well, indicating that both activities reside on the same protein. However, it has been shown that the protein has higher activity with ethanolamine and may not significantly contribute to in vivo phosphatidylcholine biosynthesis. The choline kinase-like protein encoded by CHKB belongs to the choline/ethanolamine kinase family; however, its exact function is not known. At least two transcript variants encoding two different isoforms have been found for this gene, and one of the transcripts is bicistronic. [7] [8] [9] [13] [14]
Mutations in CHKB have been found to result in mitochondrial deficiencies and associated disorders. Knockdown of the gene has been known to result in decreased choline kinase and phosphatidylcholine activity. This impairment in activity may lead to a modified composition of the phospholipid composition in the mitochondrial membrane resulting in major disorders in the function and structure of the mitochondria. Major disorders include as Megaconial Congenital Muscular Dystrophy (MDCMC), and Narcolepsy. [7] [15]
CHKB mutations have been majorly associated with Megaconial Congenital Muscular Dystrophy (MDCMC). Megaconial Congenital Muscular Dystrophy (MDCMC) is an autosomal recessive congenital muscular dystrophy characterized by muscle biopsy results displaying an enlarged mitochondria which are common in the periphery of the fibers but scarce around the center. [16]
Common clinical manifestations of MDCMC include: [15] [17]
Symptoms such as neurogenic atrophy, enlarged mitochondria in the periphery of the fibers, and complex I deficiency were shown in a Spanish patient with a homozygous mutation of c.810T>A. [15] Another patient with a homozygous mutation (p.E292X) in the CHKB gene exhibited rhythmic jerkings of arms, which were characterized as muscle spasms. [14] Finally, a patient with a homozygous c.810T>A showed signs of Gower's sign, hypotonia, and proximal muscle weakness. [18]
Narcolepsy is a neurological disabling sleep disorder, characterized by excessive daytime sleepiness, sleep fragmentation, symptoms of abnormal rapid-eye-movement (REM) sleep, cataplexy, hypnagogic hallucinations, and sleep paralysis. Cataplexy is a sudden loss of muscle tone triggered by emotions, which is the most valuable clinical feature used to diagnose narcolepsy. Human narcolepsy is primarily a sporadically occurring disorder but familial clustering has been observed. [19]
CHKB has been shown to have Protein-protein interactions with the following. [20] [8]
Fukuyama congenital muscular dystrophy (FCMD) is a rare, autosomal recessive form of muscular dystrophy (weakness and breakdown of muscular tissue) mainly described in Japan but also identified in Turkish and Ashkenazi Jewish patients; fifteen cases were first described on 1960 by Dr. Yukio Fukuyama.
Mitochondrial myopathies are types of myopathies associated with mitochondrial disease. Adenosine triphosphate (ATP), the chemical used to provide energy for the cell, cannot be produced sufficiently by oxidative phosphorylation when the mitochondrion is either damaged or missing necessary enzymes or transport proteins. With ATP production deficient in mitochondria, there is an over-reliance on anaerobic glycolysis which leads to lactic acidosis either at rest or exercise-induced.
Fukutin is a eukaryotic protein necessary for the maintenance of muscle integrity, cortical histogenesis, and normal ocular development. Mutations in the fukutin gene have been shown to result in Fukuyama congenital muscular dystrophy (FCMD) characterised by brain malformation - one of the most common autosomal-recessive disorders in Japan. In humans this protein is encoded by the FCMD gene, located on chromosome 9q31. Human fukutin exhibits a length of 461 amino acids and a predicted molecular mass of 53.7 kDa.
Calpain-3 is a protein that in humans is encoded by the CAPN3 gene.
Myotonin-protein kinase (MT-PK) also known as myotonic dystrophy protein kinase (MDPK) or dystrophia myotonica protein kinase (DMPK) is an enzyme that in humans is encoded by the DMPK gene.
Choline kinase is an enzyme which catalyzes the first reaction in the choline pathway for phosphatidylcholine (PC) biosynthesis. This reaction involves the transfer of a phosphate group from adenosine triphosphate (ATP) to choline in order to form phosphocholine.
5'-AMP-activated protein kinase catalytic subunit alpha-2 is an enzyme that in humans is encoded by the PRKAA2 gene.
Laminin subunit alpha-2 is a protein that in humans is encoded by the LAMA2 gene.
Alpha-7 integrin is a protein that in humans is encoded by the ITGA7 gene. Alpha-7 integrin is critical for modulating cell-matrix interactions. Alpha-7 integrin is highly expressed in cardiac muscle, skeletal muscle and smooth muscle cells, and localizes to Z-disc and costamere structures. Mutations in ITGA7 have been associated with congenital myopathies and noncompaction cardiomyopathy, and altered expression levels of alpha-7 integrin have been identified in various forms of muscular dystrophy.
Protein O-linked-mannose beta-1,2-N-acetylglucosaminyltransferase 1 is an enzyme that in humans is encoded by the POMGNT1 gene.
Choline kinase alpha is an enzyme that in humans is encoded by the CHKA gene.
Protein O-mannosyl-transferase 1 is an enzyme that in humans is encoded by the POMT1 gene. It is a member of the dolichyl-phosphate-mannose-protein mannosyltransferases.
Fas-activated serine/threonine kinase is an enzyme that in humans is encoded by the FASTK gene.
Ankyrin repeat domain-containing protein 1, or Cardiac ankyrin repeat protein is a protein that in humans is encoded by the ANKRD1 gene also known as CARP. CARP is highly expressed in cardiac and skeletal muscle, and is a transcription factor involved in development and under conditions of stress. CARP has been implicated in several diseases, including dilated cardiomyopathy, hypertrophic cardiomyopathy, and several skeletal muscle myopathies.
LIM domain binding 3 (LDB3), also known as Z-band alternatively spliced PDZ-motif (ZASP), is a protein which in humans is encoded by the LDB3 gene. ZASP belongs to the Enigma subfamily of proteins and stabilizes the sarcomere during contraction, through interactions with actin in cardiac and skeletal muscles. Mutations in the ZASP gene has been associated with several muscular diseases.
Protein O-mannosyl-transferase 2 is an enzyme that in humans is encoded by the POMT2 gene.
Ullrich congenital muscular dystrophy (UCMD) is a form of congenital muscular dystrophy. There are two forms: UCMD1 and UCMD2.
Collagen VI (ColVI) is a type of collagen primarily associated with the extracellular matrix of skeletal muscle. ColVI maintains regularity in muscle function and stabilizes the cell membrane. It is synthesized by a complex, multistep pathway that leads to the formation of a unique network of linked microfilaments located in the extracellular matrix (ECM). ColVI plays a vital role in numerous cell types, including chondrocytes, neurons, myocytes, fibroblasts, and cardiomyocytes. ColVI molecules are made up of three alpha chains: α1(VI), α2(VI), and α3(VI). It is encoded by 6 genes: COL6A1, COL6A2, COL6A3, COL6A4, COL6A5, and COL6A6. The chain lengths of α1(VI) and α2(VI) are about 1,000 amino acids. The chain length of α3(VI) is roughly a third larger than those of α1(VI) and α2(VI), and it consists of several spliced variants within the range of 2,500 to 3,100 amino acids.
In molecular biology, the choline/ethanolamine kinase family includes choline kinase(EC 2.7.1.32) and ethanolamine kinase.
The CDP-choline pathway, first identified by Eugene P. Kennedy in 1956, is the predominant mechanism by which mammalian cells synthesize phosphatidylcholine (PC) for incorporation into membranes or lipid-derived signalling molecules. The CDP-choline pathway represents one half of what is known as the Kennedy pathway. The other half is the CDP-ethanolamine pathway which is responsible for the biosynthesis of the phospholipid phosphatidylethanolamine (PE).
This article incorporates text from the United States National Library of Medicine, which is in the public domain.