Muscle biopsy

Last updated
Muscle biopsy
Ragged red fibres - gtc - very high mag.jpg
Micrograph of a muscle biopsy showing ragged red fibers, a finding seen in various types of mitochondrial diseases. Gomori trichrome stain.
ICD-9 15.01

In medicine, a muscle biopsy is a procedure in which a piece of muscle tissue is removed from an organism and examined microscopically. A muscle biopsy can lead to the discovery of problems with the nervous system, connective tissue, vascular system, or musculoskeletal system.

Contents

Indications

In humans with weakness and low muscle tone, a muscle biopsy can help distinguish between myopathies (where the pathology is in the muscle tissue itself) and neuropathies (where the pathology is at the nerves innervating those muscles). Muscle biopsies can also help to distinguish among various types of myopathies, by microscopic analysis for differing characteristics when exposed to a variety of chemical reactions and stains. [1] [2]

However, in some cases the muscle biopsy alone is inadequate to distinguish between certain myopathies. For example, a muscle biopsy showing the nucleus pathologically located in the center of the muscle cell would indicate "centronuclear myopathy", but research has shown that a variety of myopathies can cause these centronuclear biopsy appearance, and hence the specific genetic testing becomes increasingly important. [3] [4] Additionally muscle biopsy is the only certain way to clarify ones muscle fiber types. I.e. by undergoing a muscle biopsy one can get a clear picture of which type of muscles dominates his/her body.

Procedure

A biopsy needle is usually inserted into a muscle, wherein a small amount of tissue remains. Alternatively, an "open biopsy" can be performed by obtaining the muscle tissue through a small surgical incision.[ citation needed ]

See also

Related Research Articles

The Kocher–Debré–Semelaigne syndrome is hypothyroidism in infancy or childhood characterised by lower extremity or generalized muscular hypertrophy, myxoedema, short stature and cretinism. The absence of painful spasms and pseudomyotonia differentiates this syndrome from its adult form, which is Hoffmann syndrome.

Skeletal muscle One of three major muscle types that connect to bones

Skeletal muscles are organs of the vertebrate muscular system that are mostly attached by tendons to bones of the skeleton. The muscle cells of skeletal muscles are much longer than in the other types of muscle tissue, and are often known as muscle fibers. The muscle tissue of a skeletal muscle is striated – having a striped appearance due to the arrangement of the sarcomeres.

Myotonia is a symptom of a small handful of certain neuromuscular disorders characterized by delayed relaxation of the skeletal muscles after voluntary contraction or electrical stimulation.

Dystrophin Rod-shaped cytoplasmic protein

Dystrophin is a rod-shaped cytoplasmic protein, and a vital part of a protein complex that connects the cytoskeleton of a muscle fiber to the surrounding extracellular matrix through the cell membrane. This complex is variously known as the costamere or the dystrophin-associated protein complex (DAPC). Many muscle proteins, such as α-dystrobrevin, syncoilin, synemin, sarcoglycan, dystroglycan, and sarcospan, colocalize with dystrophin at the costamere. It has a molecular weight of 427 kDa

Duchenne muscular dystrophy Type of muscular dystrophy

Duchenne muscular dystrophy (DMD) is a severe type of muscular dystrophy that primarily affects boys. Muscle weakness usually begins around the age of four, and worsens quickly. Muscle loss typically occurs first in the thighs and pelvis followed by the arms. This can result in trouble standing up. Most are unable to walk by the age of 12. Affected muscles may look larger due to increased fat content. Scoliosis is also common. Some may have intellectual disability. Females with a single copy of the defective gene may show mild symptoms.

Hypotonia is a state of low muscle tone, often involving reduced muscle strength. Hypotonia is not a specific medical disorder, but a potential manifestation of many different diseases and disorders that affect motor nerve control by the brain or muscle strength. Hypotonia is a lack of resistance to passive movement, whereas muscle weakness results in impaired active movement. Central hypotonia originates from the central nervous system, while peripheral hypotonia is related to problems within the spinal cord, peripheral nerves and/or skeletal muscles. Severe hypotonia in infancy is commonly known as floppy baby syndrome. Recognizing hypotonia, even in early infancy, is usually relatively straightforward, but diagnosing the underlying cause can be difficult and often unsuccessful. The long-term effects of hypotonia on a child's development and later life depend primarily on the severity of the muscle weakness and the nature of the cause. Some disorders have a specific treatment but the principal treatment for most hypotonia of idiopathic or neurologic cause is physical therapy and/or occupational therapy for remediation.

Fukuyama congenital muscular dystrophy Medical condition

Fukuyama congenital muscular dystrophy (FCMD) is a rare, autosomal recessive form of muscular dystrophy mainly described in Japan but also identified in Turkish and Ashkenazi Jewish patients; fifteen cases were first described on 1960 by Dr. Yukio Fukuyama.

In medicine, myopathy is a disease of the muscle in which the muscle fibers do not function properly. This results in muscular weakness. Myopathy means muscle disease. This meaning implies that the primary defect is within the muscle, as opposed to the nerves or elsewhere. Muscle cramps, stiffness, and spasm can also be associated with myopathy.

Nemaline myopathy is a congenital, often hereditary neuromuscular disorder with many symptoms that can occur such as muscle weakness, hypoventilation, swallowing dysfunction, and impaired speech ability. The severity of these symptoms varies and can change throughout one's life to some extent. The prevalence is estimated at 1 in 50,000 live births. It is the most common non-dystrophic myopathy.

Myotonia congenita is a congenital neuromuscular channelopathy that affects skeletal muscles. It is a genetic disorder. The hallmark of the disease is the failure of initiated contraction to terminate, often referred to as delayed relaxation of the muscles (myotonia) and rigidity. Symptoms include delayed relaxation of the muscles after voluntary contraction (myotonia), and may also include stiffness, hypertrophy (enlargement), transient weakness in some forms of the disorder, severe masseter spasm, and cramping. The condition is sometimes referred to as fainting goat syndrome, as it is responsible for the eponymous 'fainting' seen in fainting goats when presented with a sudden stimulus. Of note, myotonia congenita has no association with malignant hyperthermia (MH).

Dysferlin Protein encoded by the DYSF gene in humans

Dysferlin also known as dystrophy-associated fer-1-like protein is a protein that in humans is encoded by the DYSF gene.

Centronuclear myopathy Medical condition

Centronuclear myopathies (CNM) are a group of congenital myopathies where cell nuclei are abnormally located in the center of muscle cells instead of their normal location at the periphery.

Congenital muscular dystrophy Medical condition

Congenital muscular dystrophies are autosomal recessively-inherited muscle diseases. They are a group of heterogeneous disorders characterized by muscle weakness which is present at birth and the different changes on muscle biopsy that ranges from myopathic to overtly dystrophic due to the age at which the biopsy takes place.

Distal myopathy Medical condition

Distal myopathy is a group of rare genetic disorders that cause muscle damage and weakness, predominantly in the hands and/or feet. Mutation of many different genes can be causative. Many types involve dysferlin.

Myotonic dystrophy Genetic disorder that impairs muscle function

Myotonic dystrophy (DM) is a type of muscular dystrophy, a group of genetic disorders that cause progressive muscle loss and weakness. In myotonic dystrophy, muscles are often unable to relax after contraction. Other manifestations may include cataracts, intellectual disability and heart conduction problems. In men, there may be early balding and an inability to have children. While myotonic dystrophy can occur at any age, onset is typically in the 20s and 30s.

Congenital myopathy is a very broad term for any muscle disorder present at birth. This defect primarily affects skeletal muscle fibres and causes muscular weakness and/or hypotonia. Congenital myopathies account for one of the top neuromuscular disorders in the world today, comprising approximately 6 in 100,000 live births every year. As a whole, congenital myopathies can be broadly classified as follows:

Ullrich congenital muscular dystrophy Medical condition

Ullrich congenital muscular dystrophy is a form of congenital muscular dystrophy. It is associated with variants of type VI collagen, it is commonly associated with muscle weakness and respiratory problems, though cardiac issues are not associated with this type of CMD. It is named after Otto Ullrich, who is also known for the Ullrich-Turner syndrome.

Collagen VI (ColVI) is a type of collagen primarily associated with the extracellular matrix of skeletal muscle. ColVI maintains regularity in muscle function and stabilizes the cell membrane. It is synthesized by a complex, multistep pathway that leads to the formation of a unique network of linked microfilaments located in the extracellular matrix (ECM). ColVI plays a vital role in numerous cell types, including chondrocytes, neurons, myocytes, fibroblasts, and cardiomyocytes. ColVI molecules are made up of three alpha chains: α1(VI), α2(VI), and α3(VI). It is encoded by 6 genes: COL6A1, COL6A2, COL6A3, COL6A4, COL6A5, and COL6A6. The chain lengths of α1(VI) and α2(VI) are about 1,000 amino acids. The chain length of α3(VI) is roughly a third larger than those of α1(VI) and α2(VI), and it consists of several spliced variants within the range of 2,500 to 3,100 amino acids.

Muscle–eye–brain disease Medical condition

Muscle–eye–brain (MEB) disease, also known as muscular dystrophy-dystroglycanopathy congenital with brain and eye anomalies A3 (MDDGA3), is a kind of rare congenital muscular dystrophy (CMD), largely characterized by hypotonia at birth. Patients suffer from muscular dystrophy, central nervous system abnormalities and ocular abnormalities, the condition is degenerative.

References

  1. Gonorazky, HD; Bönnemann, CG; Dowling, JJ (2018). "The genetics of congenital myopathies". Handbook of Clinical Neurology. 148: 549–564. doi:10.1016/B978-0-444-64076-5.00036-3. ISBN   9780444640765. PMID   29478600.
  2. Jungbluth, Heinz; Treves, Susan; Zorzato, Francesco; Sarkozy, Anna; Ochala, Julien; Sewry, Caroline; Phadke, Rahul; Gautel, Mathias; Muntoni, Francesco (2 February 2018). "Congenital myopathies: disorders of excitation–contraction coupling and muscle contraction". Nature Reviews Neurology. 14 (3): 151–167. doi:10.1038/nrneurol.2017.191. hdl: 11392/2382654 . PMID   29391587. S2CID   3542904.
  3. Pierson CR, Tomczak K, Agrawal P, Moghadaszadeh B, Beggs AH (July 2005). "X-linked myotubular and centronuclear myopathies". J. Neuropathol. Exp. Neurol. 64 (7): 555–64. doi: 10.1097/01.jnen.0000171653.17213.2e . PMID   16042307.
  4. Bitoun M, Maugenre S, Jeannet PY, et al. (November 2005). "Mutations in dynamin 2 cause dominant centronuclear myopathy" (PDF). Nat. Genet. 37 (11): 1207–9. doi:10.1038/ng1657. PMID   16227997. S2CID   37842933.