Estrone sulfamate

Last updated
Estrone sulfamate
Estrone sulfamate.svg
Clinical data
Other namesEMATE; J994; Estrone-3-O-sulfamate; 17-Oxoestra-1,3,5(10)-trien-3-yl sulfamate; 3-[(Aminosulfonyl)oxy]estra-1,3,5(10)-trien-17-one
Routes of
administration
By mouth
Drug class Steroid sulfatase inhibitor
Identifiers
  • [(8R,9S,13S,14S)-13-Methyl-17-oxo-7,8,9,11,12,14,15,16-octahydro-6H-cyclopenta[a]phenanthren-3-yl] sulfamate
CAS Number
PubChem CID
ChemSpider
ChEMBL
Chemical and physical data
Formula C18H23NO4S
Molar mass 349.45 g·mol−1
3D model (JSmol)
  • C[C@]12CC[C@H]3[C@H]([C@@H]1CCC2=O)CCC4=C3C=CC(=C4)OS(=O)(=O)N
  • InChI=1S/C18H23NO4S/c1-18-9-8-14-13-5-3-12(23-24(19,21)22)10-11(13)2-4-15(14)16(18)6-7-17(18)20/h3,5,10,14-16H,2,4,6-9H2,1H3,(H2,19,21,22)/t14-,15-,16+,18+/m1/s1
  • Key:RVKFQAJIXCZXQY-CBZIJGRNSA-N

Estrone sulfamate (EMATE; developmental code name J994), or estrone-3-O-sulfamate, is a steroid sulfatase (STS) inhibitor which has not yet been marketed. [1] [2] [3] It is the C3 sulfamate ester of the estrogen estrone. [1] [2] Unlike other estrogen esters however, EMATE is not an effective prodrug of estrogens. [4] A closely related compound is estradiol sulfamate (E2MATE), which is extensively metabolized into EMATE and has similar properties to it. [1] [2] [3]

EMATE shows high bioavailability and undergoes little or no first-pass metabolism with oral administration. [1] [2] The sulfamate moiety of EMATE results in carbonic anhydrase binding which, in turn, results in EMATE being taken up into and stored in erythrocytes in the blood. [1] [2] Since this occurs in the hepatic portal vein, it prevents EMATE from entering the liver during the first pass with the oral route. [1] [2] The inhibition of STS by EMATE prevents its bioactivation into estrone and estradiol, which in turn accounts for the lack of estrogenicity of EMATE. [4] A short initial peak of estradiol and estrone levels was observed with E2MATE at the start of treatment in humans, followed by very high and long-lasting concentrations of EMATE and estrone sulfate in erythrocytes, observations that are in accordance with STS inhibition. [4]

EMATE is an extremely potent and irreversible inhibitor of STS. [5] It was found to have an IC50 of 65 pM for STS inhibition in MCF-7 cells, with an almost complete inhibition of the hydrolysis of physiological concentrations of the steroid sulfates estrone sulfate and dehydroepiandrosterone sulfate in MCF-7 cells observed at a concentration of 1 μM. [5] At a dosage of 1 mg/kg orally or subcutaneously in rats, it effectively abolished estrone and DHEA-S sulfatase activities in all tissues assessed. [5] It also showed a prolonged duration of action, with only a small recovery (<10%) of hepatic STS activity occurring 7 days after a single 10 mg/kg dose in rats. [5]

Due to its ability to prevent the conversion of hormonally inactive steroid sulfates into their hormonally active forms (e.g., estrone sulfate into estrone), STS inhibitors like EMATE have potential applications in the treatment of estrogen-dependent conditions like estrogen receptor-positive breast cancer and endometriosis. [1] [2] However, estrogenicity was paradoxically observed with EMATE in rodents, and this resulted in clinical development of the compound not being pursued. [1] [2] However, E2MATE was investigated as an estradiol prodrug with improved oral pharmacokinetics and little or no first-pass hepatic impact in humans, but was found to completely lack estrogenic effects. [4] Following this, E2MATE was repurposed as an STS inhibitor, and is now under development for the treatment of endometriosis. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Danazol</span> Chemical compound

Danazol, sold as Danocrine and other brand names, is a medication used in the treatment of endometriosis, fibrocystic breast disease, hereditary angioedema and other conditions. It is taken by mouth.

<span class="mw-page-title-main">Steroid sulfatase</span> Protein-coding gene in the species Homo sapiens

Steroid sulfatase (STS), or steryl-sulfatase, formerly known as arylsulfatase C, is a sulfatase enzyme involved in the metabolism of steroids. It is encoded by the STS gene.

<span class="mw-page-title-main">Estrone sulfate</span> Chemical compound

Estrone sulfate, also known as E1S, E1SO4 and estrone 3-sulfate, is a natural, endogenous steroid and an estrogen ester and conjugate.

An estrogen ester is an ester of an estrogen, most typically of estradiol but also of other estrogens such as estrone, estriol, and even nonsteroidal estrogens like diethylstilbestrol. Esterification renders estradiol into a prodrug of estradiol with increased resistance to first-pass metabolism, slightly improving its oral bioavailability. In addition, estrogen esters have increased lipophilicity, which results in a longer duration when given by intramuscular or subcutaneous injection due to the formation of a long-lasting local depot in muscle and fat. Conversely, this is not the case with intravenous injection or oral administration. Estrogen esters are rapidly hydrolyzed into their parent estrogen by esterases once they have been released from the depot. Because estradiol esters are prodrugs of estradiol, they are considered to be natural and bioidentical forms of estrogen.

A steroidogenesis inhibitor, also known as a steroid biosynthesis inhibitor, is a type of drug which inhibits one or more of the enzymes that are involved in the process of steroidogenesis, the biosynthesis of endogenous steroids and steroid hormones. They may inhibit the production of cholesterol and other sterols, sex steroids such as androgens, estrogens, and progestogens, corticosteroids such as glucocorticoids and mineralocorticoids, and neurosteroids. They are used in the treatment of a variety of medical conditions that depend on endogenous steroids.

<span class="mw-page-title-main">Ethinylestradiol sulfonate</span> Estrogenic drug

Ethinylestradiol sulfonate (EES), sold under the brand names Deposiston and Turisteron among others, is an estrogen medication which has been used in birth control pills for women and in the treatment of prostate cancer in men. It has also been investigated in the treatment of breast cancer in women. The medication was combined with norethisterone acetate in birth control pills. EES is taken by mouth once per week.

<span class="mw-page-title-main">Steroid ester</span> Class of chemical compounds

A steroid ester is an ester of a steroid. They include androgen esters, estrogen esters, progestogen esters, and corticosteroid esters. Steroid esters may be naturally occurring/endogenous like DHEA sulfate or synthetic like estradiol valerate. Esterification is useful because it is often able to render the parent steroid into a prodrug of itself with altered chemical properties such as improved metabolic stability, water solubility, and/or lipophilicity. This, in turn, can enhance pharmacokinetics, for instance by improving the steroid's bioavailability and/or conferring depot activity and hence an extended duration with intramuscular or subcutaneous injection.

<span class="mw-page-title-main">Estradiol sulfate</span> Chemical compound

Estradiol sulfate (E2S), or 17β-estradiol 3-sulfate, is a natural, endogenous steroid and an estrogen ester. E2S itself is biologically inactive, but it can be converted by steroid sulfatase into estradiol, which is a potent estrogen. Simultaneously, estrogen sulfotransferases convert estradiol to E2S, resulting in an equilibrium between the two steroids in various tissues. Estrone and E2S are the two immediate metabolic sources of estradiol. E2S can also be metabolized into estrone sulfate (E1S), which in turn can be converted into estrone and estradiol. Circulating concentrations of E2S are much lower than those of E1S. High concentrations of E2S are present in breast tissue, and E2S has been implicated in the biology of breast cancer via serving as an active reservoir of estradiol.

<span class="mw-page-title-main">Irosustat</span> Chemical compound

Irosustat is an orally active, irreversible, nonsteroidal inhibitor of steroid sulfatase (STS) and member of the aryl sulfamate ester class of drugs that was under development by Sterix Ltd and Ipsen for the treatment of hormone-sensitive cancers such as breast cancer, prostate cancer, and endometrial cancer but has not yet been marketed. The drug was first designed and synthesized in the group of Professor Barry V L Potter at the Department of Pharmacy & Pharmacology, University of Bath, working together with Professor Michael J. Reed at Imperial College, London and its initial development was undertaken through the university spin-out company Sterix Ltd and overseen by Cancer Research UK (CRUK). Results of the "first-in-class" clinical trial in breast cancer of an STS inhibitor in humans were published in 2006 and dose optimisation studies and further clinical data have been reported.

<span class="mw-page-title-main">Estradiol sulfamate</span> Steroid sulfatase inhibitor under development

Estradiol sulfamate, or estradiol-3-O-sulfamate, is a steroid sulfatase (STS) inhibitor which is under development for the treatment of endometriosis. It is the C3 sulfamate ester of estradiol, and was originally thought to be a prodrug of estradiol.

<span class="mw-page-title-main">Estrone sulfate (medication)</span> Chemical compound

Estrone sulfate (E1S) is an estrogen medication and naturally occurring steroid hormone. It is used in menopausal hormone therapy among other indications. As the sodium salt, it is the major estrogen component of conjugated estrogens (Premarin) and esterified estrogens. In addition, E1S is used on its own as the piperazine salt estropipate. The compound also occurs as a major and important metabolite of estradiol and estrone. E1S is most commonly taken by mouth, but in the form of Premarin can also be taken by parenteral routes such as transdermal, vaginal, and injection.

<span class="mw-page-title-main">EC508</span> Chemical compound

EC508, also known as estradiol 17β-(1- -L-proline), is an estrogen which is under development by Evestra for use in menopausal hormone therapy and as a hormonal contraceptive for the prevention of pregnancy in women. It is an orally active estrogen ester – specifically, a C17β sulfonamide–proline ester of the natural and bioidentical estrogen estradiol – and acts as a prodrug of estradiol in the body. However, unlike oral estradiol and conventional oral estradiol esters such as estradiol valerate, EC508 undergoes little or no first-pass metabolism, has high oral bioavailability, and does not have disproportionate estrogenic effects in the liver. As such, it has a variety of desirable advantages over oral estradiol, similarly to parenteral estradiol, but with the convenience of oral administration. EC508 is a candidate with the potential to replace not only oral estradiol in clinical practice, but also ethinylestradiol in oral contraceptives. Evestra intends to seek Investigational New Drug status for EC508 in the second quarter of 2018.

<span class="mw-page-title-main">EC586</span> Chemical compound

EC586, also known as testosterone 17β-(1- -L-proline), is an androgen and anabolic steroid which is under development by Evestra for use in androgen replacement therapy in men. It is an orally active androgen ester – specifically, a C17β sulfonamide–proline ester of the natural and bioidentical androgen testosterone – and acts as a prodrug of testosterone in the body. However, unlike oral testosterone and conventional oral testosterone esters such as testosterone undecanoate, EC586 has high oral potency, may undergo little or no first-pass metabolism, and may not have disproportionate androgenic effects in the liver. As such, it may have a variety of desirable advantages over oral testosterone, similarly to parenteral testosterone, but with the convenience of oral administration. Evestra intends to seek Investigational New Drug status for EC586 in the fourth quarter of 2018.

<span class="mw-page-title-main">Estriol sulfamate</span> Chemical compound

Estriol sulfamate, or estriol 3-O-sulfamate, is a synthetic estrogen and estrogen ester which was never marketed. It is the C3 sulfamate ester of estriol. The drug shows substantially improved oral estrogenic potency relative to estriol in rats but without an increase in hepatic estrogenic potency. However, the closely related compound estradiol sulfamate (E2MATE) failed to show estrogenic activity in humans, which is due to the fact that it is additionally a highly potent inhibitor of steroid sulfatase which regulates the estrogenicity of such compounds and thus it prevents its own bioactivation into estradiol.

<span class="mw-page-title-main">Ethinylestradiol sulfamate</span> Chemical compound

Ethinylestradiol sulfamate, or 17α-ethynylestradiol 3-O-sulfamate, is a synthetic estrogen and estrogen ester which was never marketed. It is the C3 sulfamate ester of ethinylestradiol. The drug shows considerably improved oral estrogenic potency (uterotrophic) relative to ethinylestradiol in rats but without an increase in hepatic estrogenic potency. Related compounds like ethinylestradiol N,N-diethylsulfamate (J271) and ethinylestradiol pyrrolidinosulfonate (J272) have also been developed, and have similar properties in animals. However, the closely related compound estradiol sulfamate (E2MATE) failed to show estrogenic activity in humans, which is due to the fact that it is additionally a highly potent inhibitor of steroid sulfatase and prevents its own bioactivation into estradiol.

<span class="mw-page-title-main">Ethinylestradiol sulfate</span> Chemical compound

Ethinylestradiol sulfate, also known as 17α-ethynylestradiol 3-sulfate, is an estrogen ester – specifically, the C3 sulfuric acid (sulfate) ester of the synthetic estrogen ethinylestradiol (EE) – and is the major metabolite of EE. Circulating levels of EE sulfate range from 6 to 22 times those of EE when EE is taken orally. EE sulfate can be transformed back into EE (14–21%) via steroid sulfatase, and it has been suggested that EE sulfate may serve as a circulating reservoir for EE, similarly to the case of estrone sulfate with estradiol. However, the EE sulfate pool with EE is far smaller than the pool of estrone sulfate that occurs with estradiol. In addition, in contrast to the case of estrone sulfate and estrone, the conversion rate of EE sulfate back into EE is relatively low, and has been said probably isn't of clinical significance. However, other studies have suggested that EE sulfate may nonetheless contribute up to 20% of total EE levels.

<span class="mw-page-title-main">Estrone phosphate</span> Chemical compound

Estrone phosphate (E1P), or estrone 3-phosphate, is an estrogen and steroid sulfatase inhibitor which was never marketed. It has similar affinity for steroid sulfatase as estrone sulfate and acts as a competitive inhibitor of the enzyme. In contrast to estrone sulfate however, it is not hydrolyzed by steroid sulfatase and is instead metabolized by phosphatases.

<span class="mw-page-title-main">2-Methoxyestradiol disulfamate</span> Chemical compound

2-Methoxyestradiol disulfamate is a synthetic, oral active anti-cancer medication which was previously under development for potential clinical use. It has improved potency, low metabolism, and good pharmacokinetic properties relative to 2-methoxyestradiol (2-MeO-E2). It is also a potent inhibitor of steroid sulfatase, the enzyme that catalyzes the desulfation of steroids such as estrone sulfate and dehydroepiandrosterone sulfate (DHEA-S).

References

  1. 1 2 3 4 5 6 7 8 Elger W, Barth A, Hedden A, Reddersen G, Ritter P, Schneider B, et al. (2001). "Estrogen sulfamates: a new approach to oral estrogen therapy". Reproduction, Fertility, and Development. 13 (4): 297–305. doi:10.1071/rd01029. PMID   11800168.
  2. 1 2 3 4 5 6 7 8 Thomas MP, Potter BV (September 2015). "Estrogen O-sulfamates and their analogues: Clinical steroid sulfatase inhibitors with broad potential". The Journal of Steroid Biochemistry and Molecular Biology. 153: 160–169. doi:10.1016/j.jsbmb.2015.03.012. PMID   25843211. S2CID   24116740.
  3. 1 2 Elger W, Schwarz S, Hedden A, Reddersen G, Schneider B (December 1995). "Sulfamates of various estrogens are prodrugs with increased systemic and reduced hepatic estrogenicity at oral application". The Journal of Steroid Biochemistry and Molecular Biology. 55 (3–4): 395–403. doi:10.1016/0960-0760(95)00214-6. PMID   8541236. S2CID   31312.
  4. 1 2 3 4 Elger W, Wyrwa R, Ahmed G, Meece F, Nair HB, Santhamma B, et al. (January 2017). "Estradiol prodrugs (EP) for efficient oral estrogen treatment and abolished effects on estrogen modulated liver functions". The Journal of Steroid Biochemistry and Molecular Biology. 165 (Pt B): 305–311. doi:10.1016/j.jsbmb.2016.07.008. PMID   27449818. S2CID   26650319.
  5. 1 2 3 4 Reed MJ, Purohit A (6 December 2012). "Pharmacology of Inhibition of Estrogen-Metabolizing Enzymes". In Oettel M, Schillinger E (eds.). Estrogens and Antiestrogens II: Pharmacology and Clinical Application of Estrogens and Antiestrogen. Springer Science & Business Media. pp. 233–239. ISBN   978-3-642-60107-1.
  6. "PGL 2". AdisInsight. Springer Nature Switzerland AG.