Rhaponticin

Last updated
Rhaponticin
Rhaponticin.svg
Names
IUPAC name
3-Hydroxy-5-[(E)-2-(3-hydroxy-4-methoxyphenyl)ethen-1-yl]phenyl β-D-glucopyranoside
Systematic IUPAC name
(2S,3R,4S,5S,6R)-2-{3-Hydroxy-5-[(E)-2-(3-hydroxy-4-methoxyphenyl)ethen-1-yl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol
Other names
3',5-Dihydroxy-4'-methoxystilbene 3-O-beta-D-glucopyranoside
Ponticin
Rhapontin
Rhapontigenin glucoside
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.005.315 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 205-845-0
KEGG
PubChem CID
UNII
  • InChI=1S/C21H24O9/c1-28-16-5-4-11(8-15(16)24)2-3-12-6-13(23)9-14(7-12)29-21-20(27)19(26)18(25)17(10-22)30-21/h2-9,17-27H,10H2,1H3/b3-2+/t17-,18-,19+,20-,21-/m1/s1 X mark.svgN
    Key: GKAJCVFOJGXVIA-DXKBKAGUSA-N X mark.svgN
  • InChI=1/C21H24O9/c1-28-16-5-4-11(8-15(16)24)2-3-12-6-13(23)9-14(7-12)29-21-20(27)19(26)18(25)17(10-22)30-21/h2-9,17-27H,10H2,1H3/b3-2+/t17-,18-,19+,20-,21-/m1/s1
    Key: GKAJCVFOJGXVIA-DXKBKAGUBB
  • COc1ccc(cc1O)/C=C/c2cc(cc(c2)O[C@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CO)O)O)O)O
Properties
C21H24O9
Molar mass 420,39 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Rhaponticin is a stilbenoid glucoside compound. Its aglycone is called rhapontigenin. It can be found in rhubarb rhizomes. [1]

It has beneficial effects on diabetic mice, [1] and in vitro results suggest it may be relevant to Alzheimer's disease with an action on beta amyloid. [2] It is a phytoestrogen and has estrogenic activity. [3] [4]

Related Research Articles

<span class="mw-page-title-main">Rhubarb</span> Species of herbaceous perennial plant with fleshy, sour edible stalks

Rhubarb is the fleshy, edible stalks (petioles) of species and hybrids of Rheum in the family Polygonaceae, which are cooked and used for food. The plant is a herbaceous perennial that grows from short, thick rhizomes. Historically, different plants have been called "rhubarb" in English. The large, triangular leaves contain high levels of oxalic acid and anthrone glycosides, making them inedible. The small flowers are grouped in large compound leafy greenish-white to rose-red inflorescences.

<span class="mw-page-title-main">GSK-3</span> Class of enzymes

Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that mediates the addition of phosphate molecules onto serine and threonine amino acid residues. First discovered in 1980 as a regulatory kinase for its namesake, glycogen synthase (GS), GSK-3 has since been identified as a protein kinase for over 100 different proteins in a variety of different pathways. In mammals, including humans, GSK-3 exists in two isozymes encoded by two homologous genes GSK-3α (GSK3A) and GSK-3β (GSK3B). GSK-3 has been the subject of much research since it has been implicated in a number of diseases, including type 2 diabetes, Alzheimer's disease, inflammation, cancer, addiction and bipolar disorder.

<span class="mw-page-title-main">Gastric inhibitory polypeptide</span> Mammalian protein found in Homo sapiens

Gastric inhibitory polypeptide or gastric inhibitory peptide also known as glucose-dependent insulinotropic polypeptide abbreviated as GIP, is an inhibiting hormone of the secretin family of hormones. While it is a weak inhibitor of gastric acid secretion, its main role is to stimulate insulin secretion.

<span class="mw-page-title-main">Amylin</span> Peptide hormone that plays a role in glycemic regulation

Amylin, or islet amyloid polypeptide (IAPP), is a 37-residue peptide hormone. It is co-secreted with insulin from the pancreatic β-cells in the ratio of approximately 100:1 (insulin:amylin). Amylin plays a role in glycemic regulation by slowing gastric emptying and promoting satiety, thereby preventing post-prandial spikes in blood glucose levels.

<span class="mw-page-title-main">Amyloid beta</span> Group of peptides

Amyloid beta denotes peptides of 36–43 amino acids that are the main component of the amyloid plaques found in the brains of people with Alzheimer's disease. The peptides derive from the amyloid-beta precursor protein (APP), which is cleaved by beta secretase and gamma secretase to yield Aβ in a cholesterol-dependent process and substrate presentation. Aβ molecules can aggregate to form flexible soluble oligomers which may exist in several forms. It is now believed that certain misfolded oligomers can induce other Aβ molecules to also take the misfolded oligomeric form, leading to a chain reaction akin to a prion infection. The oligomers are toxic to nerve cells. The other protein implicated in Alzheimer's disease, tau protein, also forms such prion-like misfolded oligomers, and there is some evidence that misfolded Aβ can induce tau to misfold.

<span class="mw-page-title-main">Amyloid-beta precursor protein</span> Mammalian protein found in humans

Amyloid-beta precursor protein (APP) is an integral membrane protein expressed in many tissues and concentrated in the synapses of neurons. It functions as a cell surface receptor and has been implicated as a regulator of synapse formation, neural plasticity, antimicrobial activity, and iron export. It is coded for by the gene APP and regulated by substrate presentation. APP is best known as the precursor molecule whose proteolysis generates amyloid beta (Aβ), a polypeptide containing 37 to 49 amino acid residues, whose amyloid fibrillar form is the primary component of amyloid plaques found in the brains of Alzheimer's disease patients.

<span class="mw-page-title-main">Gingerol</span> Chemical compound

Gingerol ([6]-gingerol) is a phenolic phytochemical compound found in fresh ginger that activates spice receptors on the tongue. It is normally found as a pungent yellow oil in the ginger rhizome, but can also form a low-melting crystalline solid. This chemical compound is found in all members of the Zingiberaceae family and is high in concentrations in the grains of paradise as well as an African Ginger species.

<span class="mw-page-title-main">Type 1 diabetes</span> Form of diabetes mellitus

Type 1 diabetes (T1D), formerly known as juvenile diabetes, is an autoimmune disease that originates when cells that make insulin are destroyed by the immune system. Insulin is a hormone required for the cells to use blood sugar for energy and it helps regulate glucose levels in the bloodstream. Before treatment this results in high blood sugar levels in the body. The common symptoms of this elevated blood sugar are frequent urination, increased thirst, increased hunger, weight loss, and other serious complications. Additional symptoms may include blurry vision, tiredness, and slow wound healing. Symptoms typically develop over a short period of time, often a matter of weeks.

<span class="mw-page-title-main">Beta-2 microglobulin</span> Component of MHC class I molecules

β2 microglobulin (B2M) is a component of MHC class I molecules. MHC class I molecules have α1, α2, and α3 proteins which are present on all nucleated cells. In humans, the β2 microglobulin protein is encoded by the B2M gene.

<span class="mw-page-title-main">Beta-secretase 1</span> Enzyme

Beta-secretase 1, also known as beta-site amyloid precursor protein cleaving enzyme 1, beta-site APP cleaving enzyme 1 (BACE1), membrane-associated aspartic protease 2, memapsin-2, aspartyl protease 2, and ASP2, is an enzyme that in humans is encoded by the BACE1 gene. Expression of BACE1 is observed mainly in neurons.

Karen K. Hsiao Ashe is a professor at the Department of Neurology and Neuroscience at the University of Minnesota (UMN) Medical School, where she holds the Edmund Wallace and Anne Marie Tulloch Chairs in Neurology and Neuroscience. She is the founding director of the N. Bud Grossman Center for Memory Research and Care, and her specific research interest is memory loss resulting from Alzheimer's disease and related dementias. Her research has included the development of an animal model of Alzheimer's.

The biochemistry of Alzheimer's disease, the most common cause of dementia, is not yet very well understood. Alzheimer's disease (AD) has been identified as a proteopathy: a protein misfolding disease due to the accumulation of abnormally folded amyloid beta (Aβ) protein in the brain. Amyloid beta is a short peptide that is an abnormal proteolytic byproduct of the transmembrane protein amyloid-beta precursor protein (APP), whose function is unclear but thought to be involved in neuronal development. The presenilins are components of proteolytic complex involved in APP processing and degradation.

<span class="mw-page-title-main">Alpha secretase</span> Family of proteolytic enzymes

Alpha secretases are a family of proteolytic enzymes that cleave amyloid precursor protein (APP) in its transmembrane region. Specifically, alpha secretases cleave within the fragment that gives rise to the Alzheimer's disease-associated peptide amyloid beta when APP is instead processed by beta secretase and gamma secretase. The alpha-secretase pathway is the predominant APP processing pathway. Thus, alpha-secretase cleavage precludes amyloid beta formation and is considered to be part of the non-amyloidogenic pathway in APP processing. Alpha secretases are members of the ADAM family, which are expressed on the surfaces of cells and anchored in the cell membrane. Several such proteins, notably ADAM10, have been identified as possessing alpha-secretase activity. Upon cleavage by alpha secretases, APP releases its extracellular domain - a fragment known as APPsα - into the extracellular environment in a process known as ectodomain shedding.

<span class="mw-page-title-main">Proteinopathy</span> Medical condition

In medicine, proteinopathy, or proteopathy, protein conformational disorder, or protein misfolding disease refers to a class of diseases in which certain proteins become structurally abnormal, and thereby disrupt the function of cells, tissues and organs of the body. Often the proteins fail to fold into their normal configuration; in this misfolded state, the proteins can become toxic in some way or they can lose their normal function. The proteinopathies include such diseases as Creutzfeldt–Jakob disease and other prion diseases, Alzheimer's disease, Parkinson's disease, amyloidosis, multiple system atrophy, and a wide range of other disorders. The term proteopathy was first proposed in 2000 by Lary Walker and Harry LeVine.

<span class="mw-page-title-main">Insulin-degrading enzyme</span> Mammalian protein found in Homo sapiens

Insulin-degrading enzyme, also known as IDE, is an enzyme.

<span class="mw-page-title-main">Presenilin-1</span> Protein-coding gene in the species Homo sapiens

Presenilin-1(PS-1) is a presenilin protein that in humans is encoded by the PSEN1 gene. Presenilin-1 is one of the four core proteins in the gamma secretase complex, which is considered to play an important role in generation of amyloid beta (Aβ) from amyloid-beta precursor protein (APP). Accumulation of amyloid beta is associated with the onset of Alzheimer's disease.

<span class="mw-page-title-main">Alzheimer's disease</span> Progressive neurodegenerative disease

Alzheimer's disease (AD) is a neurodegenerative disease that usually starts slowly and progressively worsens. It is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in remembering recent events. As the disease advances, symptoms can include problems with language, disorientation, mood swings, loss of motivation, self-neglect, and behavioral issues. As a person's condition declines, they often withdraw from family and society. Gradually, bodily functions are lost, ultimately leading to death. Although the speed of progression can vary, the typical life expectancy following diagnosis is three to nine years.

<span class="mw-page-title-main">Baicalein</span> Chemical compound

Baicalein (5,6,7-trihydroxyflavone) is a flavone, a type of flavonoid, originally isolated from the roots of Scutellaria baicalensis and Scutellaria lateriflora. It is also reported in Oroxylum indicum and Thyme. It is the aglycone of baicalin. Baicalein is one of the active ingredients of Sho-Saiko-To, which is a Chinese classic herbal formula, and listed in Japan as Kampo medicine. As a Chinese herbal supplement, it is believed to enhance liver health.

Freund's adjuvant is a solution of antigen emulsified in mineral oil and used as an immunopotentiator (booster). The complete form, Freund's Complete Adjuvant is composed of inactivated and dried mycobacteria, whereas the incomplete form lacks the mycobacterial components. It is named after Jules T. Freund.

<span class="mw-page-title-main">17α-Estradiol</span> Chemical compound

17α-Estradiol is a minor and weak endogenous steroidal estrogen that is related to 17β-estradiol. It is the C17 epimer of estradiol. It has approximately 100-fold lower estrogenic potency than 17β-estradiol. The compound shows preferential affinity for the ERα over the ERβ. Although 17α-estradiol is far weaker than 17β-estradiol as an agonist of the nuclear estrogen receptors, it has been found to bind to and activate the brain-expressed ER-X with a greater potency than that of 17β-estradiol, suggesting that it may be the predominant endogenous ligand for the receptor.

References

  1. 1 2 Chen, Jinlong; Ma, Mengmeng; Lu, Yanwei; Wang, Lisheng; Wu, Chutse; Duan, Haifeng (2009). "Rhaponticin from Rhubarb Rhizomes Alleviates Liver Steatosis and Improves Blood Glucose and Lipid Profiles in KK/Ay Diabetic Mice". Planta Medica. 75 (5): 472–7. doi:10.1055/s-0029-1185304. PMID   19235684.
  2. Misiti, F; Sampaolese, B; Mezzogori, D; Orsini, F; Pezzotti, M; Giardina, B; Clementi, M (2006). "Protective effect of rhubarb derivatives on amyloid beta (1–42) peptide-induced apoptosis in IMR-32 cells: A case of nutrigenomic". Brain Research Bulletin. 71 (1–3): 29–36. doi:10.1016/j.brainresbull.2006.07.012. PMID   17113925. S2CID   31748806.
  3. Nirali Prakashan (2009). Pharmacognosy. Nirali Prakashan. pp. 8–. ISBN   978-81-963961-5-2.
  4. Andrea R. Genazzani; Basil C. Tarlatzis (1 December 2015). Frontiers in Gynecological Endocrinology: Volume 3: Ovarian Function and Reproduction - From Needs to Possibilities. Springer. pp. 178–. ISBN   978-3-319-23865-4.