Combretastatin A-4

Last updated

Contents

Combretastatin A-4
Combretastatin A4.svg
Names
Preferred IUPAC name
2-Methoxy-5-[(1Z)-2-(3,4,5-trimethoxyphenyl)ethen-1-yl]phenol
Other names
Combretastatin A4
CA-4
1-(3,4,5-Trimethoxyphenyl)-2-(3′-hydroxy-4′-methoxyphenyl)ethene
3,4,5-Trimethoxy-3′-hydroxy-4′-methoxystilbene
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.159.667 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C18H20O5/c1-20-15-8-7-12(9-14(15)19)5-6-13-10-16(21-2)18(23-4)17(11-13)22-3/h5-11,19H,1-4H3/b6-5- Yes check.svgY
    Key: HVXBOLULGPECHP-WAYWQWQTSA-N Yes check.svgY
  • COC1=C(C=C(C=C1)C=CC2=CC(=C(C(=C2)OC)OC)OC)O
Properties
C18H20O5
Molar mass 316.34 g/mol
Melting point 116 °C (241 °F; 389 K) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Combretastatin A-4 is a combretastatin and a stilbenoid. It can be isolated from Combretum afrum , the Eastern Cape South African bushwillow tree or in Combretum leprosum , the mofumbo, a species found in Brazil. [2] [3]

Function

Tubulin represents a potent target in cancer chemotherapy, given its role in cell division. Combretastatin is a naturally occurring well known tubulin polymerization inhibitor. Combretastatin A-4 comes in two stereoisomers (cis (shown top right), and trans); The cis form binds much better to the 'colchicine' site on tubulin to inhibit polymerization. [4]

Derivatives

Combretastatin A-4 is the active component of combretastatin A-4 phosphate, a prodrug designed to damage the vasculature (blood vessels) of cancer tumors causing central necrosis.[ citation needed ]

A large number of synthetic derivatives have been reported, [5] [6] including beta-lactam based compounds. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Benzimidazole</span> Chemical compound

Benzimidazole is a heterocyclic aromatic organic compound. This bicyclic compound may be viewed as fused rings of the aromatic compounds benzene and imidazole. It is a white solid that appears in form of tabular crystals.

<span class="mw-page-title-main">Noscapine</span> Chemical compound

Noscapine is a benzylisoquinoline alkaloid, of the phthalideisoquinoline structural subgroup, which has been isolated from numerous species of the family Papaveraceae. It lacks significant hypnotic, euphoric, or analgesic effects affording it with very low addictive potential. This agent is primarily used for its antitussive (cough-suppressing) effects.

<span class="mw-page-title-main">Podophyllotoxin</span> Chemical compound

Podophyllotoxin (PPT) is the active ingredient in Podofilox, which is a medical cream that is used to treat genital warts and molluscum contagiosum. It is not recommended in HPV infections without external warts. It can be applied either by a healthcare provider or the person themselves.

<span class="mw-page-title-main">2-Imidazoline</span> Chemical compound

2-Imidazoline (Preferred IUPAC name: 4,5-dihydro-1H-imidazole) is one of three isomers of the nitrogen-containing heterocycle imidazoline, with the formula C3H6N2. The 2-imidazolines are the most common imidazolines commercially, as the ring exists in some natural products and some pharmaceuticals. They also have been examined in the context of organic synthesis, coordination chemistry, and homogeneous catalysis.

<i>Vinca</i> alkaloid

Vinca alkaloids are a set of anti-mitotic and anti-microtubule alkaloid agents originally derived from the periwinkle plant Catharanthus roseus and other vinca plants. They block beta-tubulin polymerization in a dividing cell.

<span class="mw-page-title-main">Epothilone</span> Class of chemical compounds

Epothilones are a class of potential cancer drugs. Like taxanes, they prevent cancer cells from dividing by interfering with tubulin, but in early trials, epothilones have better efficacy and milder adverse effects than taxanes.

<span class="mw-page-title-main">Combretastatin</span> Chemical compound

Combretastatin is a dihydrostilbenoid found in Combretum afrum.

<span class="mw-page-title-main">(+)-CPCA</span> Stimulant drug

(+)-CPCA is a stimulant drug similar in structure to pethidine and to RTI-31, but nocaine lacks the two-carbon bridge of RTI-31's tropane skeleton. This compound was first developed as a substitute agent for cocaine.

<span class="mw-page-title-main">Mitotic inhibitor</span> Cell division inhibitor

A mitotic inhibitor, microtubule inhibitor, or tubulin inhibitor, is a drug that inhibits mitosis, or cell division, and is used in treating cancer, gout, and nail fungus. These drugs disrupt microtubules, which are structures that pull the chromosomes apart when a cell divides. Mitotic inhibitors are used in cancer treatment, because cancer cells are able to grow through continuous division that eventually spread through the body (metastasize). Thus, cancer cells are more sensitive to inhibition of mitosis than normal cells. Mitotic inhibitors are also used in cytogenetics, where they stop cell division at a stage where chromosomes can be easily examined.

<span class="mw-page-title-main">JNJ-7925476</span> Chemical compound

JNJ-7925476 is a triple reuptake inhibitor antidepressant discovered by Johnson & Johnson, but never marketed.

<span class="mw-page-title-main">Combretastatin A-1</span> Chemical compound

Combretastatin A-1 is a combretastatin and a stilbenoid. It can be found in Combretum afrum, the Eastern Cape South African Bushwillow tree.

<span class="mw-page-title-main">RTI-83</span> Chemical compound

RTI-83 is a phenyltropane derivative which represents a rare example of an SDRI or serotonin-dopamine reuptake inhibitor, a drug which inhibits the reuptake of the neurotransmitters serotonin and dopamine, while having little or no effect on the reuptake of the related neurotransmitter noradrenaline. With a binding affinity (Ki) of 55 nM at DAT and 28.4 nM at SERT but only 4030 nM at NET, RTI-83 has reasonable selectivity for DAT/SERT over NET

<span class="mw-page-title-main">Substituted tryptamine</span> Class of indoles

Substituted tryptamines, or serotonin analogues, are organic compounds which may be thought of as being derived from tryptamine itself. The molecular structures of all tryptamines contain an indole ring, joined to an amino (NH2) group via an ethyl (−CH2–CH2−) sidechain. In substituted tryptamines, the indole ring, sidechain, and/or amino group are modified by substituting another group for one of the hydrogen (H) atoms.

<span class="mw-page-title-main">Eudistomin</span>

Eudistomins are β-carboline derivatives, isolated from ascidians, like Ritterella sigillinoides, Lissoclinum fragile, or Pseudodistoma aureum.

<span class="mw-page-title-main">Sponge isolates</span>

Lacking an immune system, protective shell, or mobility, sponges have developed an ability to synthesize a variety of unusual compounds for survival. C-nucleosides isolated from Caribbean Cryptotethya crypta, were the basis for the synthesis of zidovudine (AZT), aciclovir (Cyclovir), cytarabine (Depocyt), and cytarabine derivative gemcitabine (Gemzar).

<span class="mw-page-title-main">CBD-DMH</span> Chemical compound with cannabinoid effects

Cannabidiol-dimethylheptyl (CBD-DMH or DMH-CBD) is a synthetic homologue of cannabidiol where the pentyl chain has been replaced by a dimethylheptyl chain. Several isomers of this compound are known. The most commonly used isomer in research is (−)-CBD-DMH, which has the same stereochemistry as natural cannabidiol, and a 1,1-dimethylheptyl side chain. This compound is not psychoactive and acts primarily as an anandamide reuptake inhibitor, but is more potent than cannabidiol as an anticonvulsant and has around the same potency as an antiinflammatory. Unexpectedly the “unnatural” enantiomer (+)-CBD-DMH, which has reversed stereochemistry from cannabidiol, was found to be a directly acting cannabinoid receptor agonist with a Ki of 17.4nM at CB1 and 211nM at CB2, and produces typical cannabinoid effects in animal studies, as does its 7-OH derivative.

Katherine Seley-Radtke is an American medicinal chemist who specializes in the discovery and design of novel nucleoside or nucleotide based enzyme inhibitors that may be used to treat infections or cancer. She has authored over 90 peer-reviewed publications, is an inventor of five issued US patents, and is a professor in the department of chemistry and biochemistry at the University of Maryland, Baltimore County. Her international impact includes scientific collaborations, policy advising and diplomatic appointments in biosecurity efforts.

<span class="mw-page-title-main">2-Methoxyestradiol disulfamate</span> Chemical compound

2-Methoxyestradiol disulfamate is a synthetic, oral active anti-cancer medication which was previously under development for potential clinical use. It has improved potency, low metabolism, and good pharmacokinetic properties relative to 2-methoxyestradiol (2-MeO-E2). It is also a potent inhibitor of steroid sulfatase, the enzyme that catalyzes the desulfation of steroids such as estrone sulfate and dehydroepiandrosterone sulfate (DHEA-S).

References

  1. Pettit, G. R.; Sheo Bux Singh Boyd; M. R. Hamel, E. (1995), "Antineoplastic Agents. 291. Isolation and Synthesis of Combretastatins A-4, A-5, and A-6", Journal of Medicinal Chemistry, 38 (10): 1666–1672, doi:10.1021/jm00010a011, PMID   7752190
  2. Determination of Combretastatin A-4 in Combretum leprosum. SCN Queiroz, MR Assalin, S Nobre, IS Melo, RM Moraes, VL Ferracini and AL Cerdeira, Planta Med, 2010, volume 76, pages 53, doi : 10.1055/s-0030-1251815
  3. Gill, Rupinder; Kaur, Ramandeep; Kaur, Gurneet; Rawal, Ravindra; Shah, Anamik; Bariwal, Jitender (2014). "A Comprehensive Review on Combretastatin Analogues as Tubulin Binding Agents". Current Organic Chemistry. 18 (19): 2462–2512. doi:10.2174/138527281819141028114428.
  4. Structural Basis of cis- and trans-Combretastatin Binding to Tubulin. Gaspari. 2017
  5. Ma; et al. (2013). "Synthesis and biological evaluation of Combretastatin A-4 derivatives containing a 3'-O-substituted carbonic ether moiety as potential antitumor agents". Chemistry Central Journal. 7 (1): 179. doi: 10.1186/1752-153X-7-179 . PMC   3878987 . PMID   24304592.
  6. Richter, Michael; Boldescu, Veaceslav; Graf, Dominik; Streicher, Felix; Dimoglo, Anatoli; Bartenschlager, Ralf; Klein, Christian D. (2019). "Synthesis, Biological Evaluation, and Molecular Docking of Combretastatin and Colchicine Derivatives and their hCE1-Activated Prodrugs as Antiviral Agents". ChemMedChem. 14 (4): 469–483. doi: 10.1002/cmdc.201800641 . ISSN   1860-7187. PMID   30605241.
  7. O'Boyle, N; Miriam Carr; Lisa M. Greene; Orla Bergin; Seema M. Nathwani; Thomas McCabe; David G. Lloyd; Daniela M Zisterer; Mary J. Meegan (2010). "Synthesis and evaluation of azetidinone analogues of combretastatin A-4 as tubulin targeting agents". Journal of Medicinal Chemistry. 53 (24): 8569–8584. doi:10.1021/jm101115u. hdl: 2262/81779 . PMID   21080725.