2-Methoxyestradiol

Last updated
2-Methoxyestradiol
2-Methoxyestradiol.svg
Clinical data
Trade names Panzem
Other names2-ME2; 2-MeO-E2; 2-MeOE2; 2-Hydroxyestradiol 2-methyl ether; 2-Methoxyestra-1,3,5(10)-triene-3,17β-diol
Identifiers
  • (8R,9S,13S,14S,17S)-2-Methoxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthrene-3,17-diol
CAS Number
PubChem CID
ChemSpider
UNII
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.164.606 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C19H26O3
Molar mass 302.414 g·mol−1
3D model (JSmol)
  • Oc1cc3c(cc1OC)[C@H]2CC[C@@]4([C@@H](O)CC[C@H]4[C@@H]2CC3)C
  • InChI=1S/C19H26O3/c1-19-8-7-12-13(15(19)5-6-18(19)21)4-3-11-9-16(20)17(22-2)10-14(11)12/h9-10,12-13,15,18,20-21H,3-8H2,1-2H3/t12-,13+,15-,18-,19-/m0/s1 Yes check.svgY
  • Key:CQOQDQWUFQDJMK-SSTWWWIQSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

2-Methoxyestradiol (2-ME2, 2-MeO-E2) is a natural metabolite of estradiol and 2-hydroxyestradiol (2-OHE2). It is specifically the 2-methyl ether of 2-hydroxyestradiol. 2-Methoxyestradiol prevents the formation of new blood vessels that tumors need in order to grow (angiogenesis), hence it is an angiogenesis inhibitor. [1] It also acts as a vasodilator [2] and induces apoptosis in some cancer cell lines. [3] 2-Methoxyestradiol is derived from estradiol, although it interacts poorly with the estrogen receptors (2,000-fold lower activational potency relative to estradiol). [4] However, it retains activity as a high-affinity agonist of the G protein-coupled estrogen receptor (GPER) (10 nM, relative to 3–6 nM for estradiol). [5] [6]

Contents

Selected biological properties of endogenous estrogens in rats
Estrogen ER Tooltip Estrogen receptor RBA Tooltip relative binding affinity (%) Uterine weight (%) Uterotrophy LH Tooltip Luteinizing hormone levels (%) SHBG Tooltip Sex hormone-binding globulin RBA Tooltip relative binding affinity (%)
Control100100
Estradiol (E2) 100506 ± 20+++12–19100
Estrone (E1) 11 ± 8490 ± 22+++ ?20
Estriol (E3) 10 ± 4468 ± 30+++8–183
Estetrol (E4) 0.5 ± 0.2 ?Inactive ?1
17α-Estradiol 4.2 ± 0.8 ? ? ? ?
2-Hydroxyestradiol 24 ± 7285 ± 8+b31–6128
2-Methoxyestradiol0.05 ± 0.04101Inactive ?130
4-Hydroxyestradiol 45 ± 12 ? ? ? ?
4-Methoxyestradiol 1.3 ± 0.2260++ ?9
4-Fluoroestradiol a180 ± 43 ?+++ ? ?
2-Hydroxyestrone 1.9 ± 0.8130 ± 9Inactive110–1428
2-Methoxyestrone 0.01 ± 0.00103 ± 7Inactive95–100120
4-Hydroxyestrone 11 ± 4351++21–5035
4-Methoxyestrone 0.13 ± 0.04338++65–9212
16α-Hydroxyestrone 2.8 ± 1.0552 ± 42+++7–24<0.5
2-Hydroxyestriol 0.9 ± 0.3302+b ? ?
2-Methoxyestriol 0.01 ± 0.00 ?Inactive ?4
Notes: Values are mean ± SD or range. ERRBA = Relative binding affinity to estrogen receptors of rat uterine cytosol. Uterine weight = Percentage change in uterine wet weight of ovariectomized rats after 72 hours with continuous administration of 1 μg/hour via subcutaneously implanted osmotic pumps. LH levels = Luteinizing hormone levels relative to baseline of ovariectomized rats after 24 to 72 hours of continuous administration via subcutaneous implant. Footnotes:a = Synthetic (i.e., not endogenous). b = Atypical uterotrophic effect which plateaus within 48 hours (estradiol's uterotrophy continues linearly up to 72 hours). Sources: See template.

Clinical development

2-Methoxyestradiol was being developed as an experimental drug candidate with the tentative brand name Panzem. [7] It has undergone Phase 1 clinical trials against breast cancer. [8] A phase II trial of 18 advanced ovarian cancer patients reported encouraging results in October 2007. [9]

Preclinical models also suggest that 2-methoxyestradiol could also be effective against inflammatory diseases such as rheumatoid arthritis. Several studies have been conducted showing 2-methoxyestradiol is a microtubule inhibitor [10] and is inhibitory against prostate cancer in rodents. [11]

As of 2015, all clinical development of 2-methoxyestradiol has been suspended or discontinued. [12] This is significantly due to the very poor oral bioavailability of the molecule and also due to its extensive metabolism. Analogues have been developed in an attempt to overcome these problems. [13] An example is 2-methoxyestradiol disulfamate (STX-140), the C3 and C17β disulfamate ester of 2-methoxyestradiol. [13]

Clinical effects

2-Methoxyestradiol was found to increase sex hormone-binding globulin (SHBG) levels in men by 2.5-fold at a dose of 400 mg/day and by 4-fold at a dose of 1,200 mg/day. [14] Conversely, it did not seem to suppress testosterone levels. [14]

See also

Related Research Articles

<span class="mw-page-title-main">Estradiol</span> Chemical compound

Estradiol (E2), also spelled oestradiol, is an estrogen steroid hormone and the major female sex hormone. It is involved in the regulation of the estrous and menstrual female reproductive cycles. Estradiol is responsible for the development of female secondary sexual characteristics such as the breasts, widening of the hips and a female-associated pattern of fat distribution. It is also important in the development and maintenance of female reproductive tissues such as the mammary glands, uterus and vagina during puberty, adulthood and pregnancy. It also has important effects in many other tissues including bone, fat, skin, liver, and the brain.

<span class="mw-page-title-main">Estriol</span> Chemical compound

Estriol (E3), also spelled oestriol, is a steroid, a weak estrogen, and a minor female sex hormone. It is one of three major endogenous estrogens, the others being estradiol and estrone. Levels of estriol in women who are not pregnant are almost undetectable. However, during pregnancy, estriol is synthesized in very high quantities by the placenta and is the most produced estrogen in the body by far, although circulating levels of estriol are similar to those of other estrogens due to a relatively high rate of metabolism and excretion. Relative to estradiol, both estriol and estrone have far weaker activity as estrogens.

Hot flashes are a form of flushing, often caused by the changing hormone levels that are characteristic of menopause. They are typically experienced as a feeling of intense heat with sweating and rapid heartbeat, and may typically last from two to 30 minutes for each occurrence.

<span class="mw-page-title-main">Tamoxifen</span> Medication

Tamoxifen, sold under the brand name Nolvadex among others, is a selective estrogen receptor modulator used to prevent breast cancer in women and men. It is also being studied for other types of cancer. It has been used for Albright syndrome. Tamoxifen is typically taken daily by mouth for five years for breast cancer.

Fulvestrant, sold under the brand name Faslodex among others, is an antiestrogenic medication used to treat hormone receptor (HR)-positive metastatic breast cancer in postmenopausal women with disease progression as well as HR-positive, HER2-negative advanced breast cancer in combination with abemaciclib or palbociclib in women with disease progression after endocrine therapy. It is given by injection into a muscle.

<span class="mw-page-title-main">Raloxifene</span> Chemical compound

Raloxifene, sold under the brand name Evista among others, is a medication used to prevent and treat osteoporosis in postmenopausal women and those on glucocorticoids. For osteoporosis it is less preferred than bisphosphonates. It is also used to reduce the risk of breast cancer in those at high risk. It is taken by mouth.

<span class="mw-page-title-main">Ethinylestradiol</span> Estrogen medication

Ethinylestradiol (EE) is an estrogen medication which is used widely in birth control pills in combination with progestins. In the past, EE was widely used for various indications such as the treatment of menopausal symptoms, gynecological disorders, and certain hormone-sensitive cancers. It is usually taken by mouth but is also used as a patch and vaginal ring.

<span class="mw-page-title-main">Polyestradiol phosphate</span> Chemical compound

Polyestradiol phosphate (PEP), sold under the brand name Estradurin, is an estrogen medication which is used primarily in the treatment of prostate cancer in men. It is also used in women to treat breast cancer, as a component of hormone therapy to treat low estrogen levels and menopausal symptoms, and as a component of feminizing hormone therapy for transgender women. It is given by injection into muscle once every four weeks.

<span class="mw-page-title-main">Estramustine phosphate</span> Chemical compound

Estramustine phosphate (EMP), also known as estradiol normustine phosphate and sold under the brand names Emcyt and Estracyt, is a dual estrogen and chemotherapy medication which is used in the treatment of prostate cancer in men. It is taken multiple times a day by mouth or by injection into a vein.

<span class="mw-page-title-main">GPER</span> Protein-coding gene in the species Homo sapiens

G protein-coupled estrogen receptor 1 (GPER), also known as G protein-coupled receptor 30 (GPR30), is a protein that in humans is encoded by the GPER gene. GPER binds to and is activated by the female sex hormone estradiol and is responsible for some of the rapid effects that estradiol has on cells.

<span class="mw-page-title-main">Afimoxifene</span> Chemical compound

Afimoxifene, also known as 4-hydroxytamoxifen (4-OHT) and by its tentative brand name TamoGel, is a selective estrogen receptor modulator (SERM) of the triphenylethylene group and an active metabolite of tamoxifen. The drug is under development under the tentative brand name TamoGel as a topical gel for the treatment of hyperplasia of the breast. It has completed a phase II clinical trial for cyclical mastalgia, but further studies are required before afimoxifene can be approved for this indication and marketed.

<span class="mw-page-title-main">Estradiol undecylate</span> Chemical compound

Estradiol undecylate, also known as estradiol undecanoate and formerly sold under the brand names Delestrec and Progynon Depot 100 among others, is an estrogen medication which has been used in the treatment of prostate cancer in men. It has also been used as a part of hormone therapy for transgender women. Although estradiol undecylate has been used in the past, it was discontinued and hence is no longer available. The medication has been given by injection into muscle usually once a month.

<span class="mw-page-title-main">2-Hydroxyestradiol</span> Chemical compound

2-Hydroxyestradiol (2-OHE2), also known as estra-1,3,5(10)-triene-2,3,17β-triol, is an endogenous steroid, catechol estrogen, and metabolite of estradiol, as well as a positional isomer of estriol.

<span class="mw-page-title-main">Estradiol glucuronide</span> Chemical compound

Estradiol glucuronide, or estradiol 17β-D-glucuronide, is a conjugated metabolite of estradiol. It is formed from estradiol in the liver by UDP-glucuronyltransferase via attachment of glucuronic acid and is eventually excreted in the urine by the kidneys. It has much higher water solubility than does estradiol. Glucuronides are the most abundant estrogen conjugates.

<span class="mw-page-title-main">Hydroxylation of estradiol</span>

The hydroxylation of estradiol is one of the major routes of metabolism of the estrogen steroid hormone estradiol. It is hydroxylated into the catechol estrogens 2-hydroxyestradiol and 4-hydroxyestradiol and into estriol (16α-hydroxyestradiol), reactions which are catalyzed by cytochrome P450 enzymes predominantly in the liver, but also in various other tissues.

<span class="mw-page-title-main">High-dose estrogen therapy</span> Type of hormone therapy

High-dose estrogen therapy (HDE) is a type of hormone therapy in which high doses of estrogens are given. When given in combination with a high dose of progestogen, it has been referred to as pseudopregnancy. It is called this because the estrogen and progestogen levels achieved are in the range of the very high levels of these hormones that occur during pregnancy. HDE and pseudopregnancy have been used in medicine for a number of hormone-dependent indications, such as breast cancer, prostate cancer, and endometriosis, among others. Both natural or bioidentical estrogens and synthetic estrogens have been used and both oral and parenteral routes may be used.

<span class="mw-page-title-main">Estrogen (medication)</span> Type of medication

An estrogen (E) is a type of medication which is used most commonly in hormonal birth control and menopausal hormone therapy, and as part of feminizing hormone therapy for transgender women. They can also be used in the treatment of hormone-sensitive cancers like breast cancer and prostate cancer and for various other indications. Estrogens are used alone or in combination with progestogens. They are available in a wide variety of formulations and for use by many different routes of administration. Examples of estrogens include bioidentical estradiol, natural conjugated estrogens, synthetic steroidal estrogens like ethinylestradiol, and synthetic nonsteroidal estrogens like diethylstilbestrol. Estrogens are one of three types of sex hormone agonists, the others being androgens/anabolic steroids like testosterone and progestogens like progesterone.

<span class="mw-page-title-main">Estetrol (medication)</span> Estrogen medication

Estetrol (E4) is an estrogen medication and naturally occurring steroid hormone which is used in combination with a progestin in combined birth control pills and is under development for various other indications. These investigational uses include menopausal hormone therapy to treat symptoms such as vaginal atrophy, hot flashes, and bone loss and the treatment of breast cancer and prostate cancer. It is taken by mouth.

The pharmacology of estradiol, an estrogen medication and naturally occurring steroid hormone, concerns its pharmacodynamics, pharmacokinetics, and various routes of administration.

<span class="mw-page-title-main">2-Methoxyestradiol disulfamate</span> Chemical compound

2-Methoxyestradiol disulfamate is a synthetic, oral active anti-cancer medication which was previously under development for potential clinical use. It has improved potency, low metabolism, and good pharmacokinetic properties relative to 2-methoxyestradiol (2-MeO-E2). It is also a potent inhibitor of steroid sulfatase, the enzyme that catalyzes the desulfation of steroids such as estrone sulfate and dehydroepiandrosterone sulfate (DHEA-S).

References

  1. Pribluda VS, Gubish ER, Lavallee TM, Treston A, Swartz GM, Green SJ (2000). "2-Methoxyestradiol: an endogenous antiangiogenic and antiproliferative drug candidate". Cancer and Metastasis Reviews. 19 (1–2): 173–179. doi:10.1023/a:1026543018478. PMID   11191057. S2CID   20055299.
  2. Koganti S, Snyder R, Thekkumkara T (April 2012). "Pharmacologic effects of 2-methoxyestradiol on angiotensin type 1 receptor down-regulation in rat liver epithelial and aortic smooth muscle cells". Gender Medicine. 9 (2): 76–93. doi:10.1016/j.genm.2012.01.008. PMC   3322289 . PMID   22366193.
  3. LaVallee TM, Zhan XH, Johnson MS, Herbstritt CJ, Swartz G, Williams MS, et al. (January 2003). "2-methoxyestradiol up-regulates death receptor 5 and induces apoptosis through activation of the extrinsic pathway". Cancer Research. 63 (2): 468–475. PMID   12543804.
  4. Sibonga JD, Lotinun S, Evans GL, Pribluda VS, Green SJ, Turner RT (March 2003). "Dose-response effects of 2-methoxyestradiol on estrogen target tissues in the ovariectomized rat". Endocrinology. 144 (3): 785–792. doi: 10.1210/en.2002-220632 . PMID   12586754.
  5. Prossnitz ER, Arterburn JB (July 2015). "International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators". Pharmacological Reviews. 67 (3): 505–540. doi:10.1124/pr.114.009712. PMC   4485017 . PMID   26023144.
  6. Thekkumkara T, Snyder R, Karamyan VT (2016). "Competitive Binding Assay for the G-Protein-Coupled Receptor 30 (GPR30) or G-Protein-Coupled Estrogen Receptor (GPER)". Estrogen Receptors. Methods in Molecular Biology. Vol. 1366. Springer. pp. 11–7. doi:10.1007/978-1-4939-3127-9_2. ISBN   978-1-4939-3126-2. PMID   26585123.
  7. "EntreMed's Statistics". EntreMed, Inc. Archived from the original on May 4, 2005.
  8. Tevaarwerk AJ, Holen KD, Alberti DB, Sidor C, Arnott J, Quon C, et al. (February 2009). "Phase I trial of 2-methoxyestradiol NanoCrystal dispersion in advanced solid malignancies". Clinical Cancer Research. 15 (4): 1460–1465. doi:10.1158/1078-0432.CCR-08-1599. PMC   2892631 . PMID   19228747.
  9. "EntreMed Presents Results for Panzem® NCD Phase 2 Ovarian Cancer Study". Archived from the original on July 17, 2012.
  10. Lakhani NJ, Sarkar MA, Venitz J, Figg WD (February 2003). "2-Methoxyestradiol, a promising anticancer agent". Pharmacotherapy. 23 (2): 165–172. doi:10.1592/phco.23.2.165.32088. PMID   12587805. S2CID   1541302.
  11. Sato F, Fukuhara H, Basilion JP (September 2005). "Effects of hormone deprivation and 2-methoxyestradiol combination therapy on hormone-dependent prostate cancer in vivo". Neoplasia. 7 (9): 838–846. doi:10.1593/neo.05145. PMC   1501932 . PMID   16229806.
  12. "2-Methoxyestradiol - CASI Pharmaceuticals". Adis Insight. Springer Nature Switzerland AG. Retrieved 2 March 2017.
  13. 1 2 Potter BV (August 2018). "SULFATION PATHWAYS: Steroid sulphatase inhibition via aryl sulphamates: clinical progress, mechanism and future prospects". Journal of Molecular Endocrinology. 61 (2): T233–T252. doi: 10.1530/JME-18-0045 . PMID   29618488.
  14. 1 2 Sweeney C, Liu G, Yiannoutsos C, Kolesar J, Horvath D, Staab MJ, et al. (September 2005). "A phase II multicenter, randomized, double-blind, safety trial assessing the pharmacokinetics, pharmacodynamics, and efficacy of oral 2-methoxyestradiol capsules in hormone-refractory prostate cancer". Clinical Cancer Research. 11 (18): 6625–6633. doi: 10.1158/1078-0432.CCR-05-0440 . PMID   16166441.