ABCA1

Last updated
ABCA1
Identifiers
Aliases ABCA1 , ATP-binding cassette, sub-family A (ABC1), member 1, Abca1, ABC-1, Abc1, ABC1, CERP, HDLDT1, TGD, ATP binding cassette subfamily A member 1, HDLCQTL13, HPALP1
External IDs OMIM: 600046 MGI: 99607 HomoloGene: 21130 GeneCards: ABCA1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005502

NM_013454

RefSeq (protein)

NP_005493

NP_038482

Location (UCSC) Chr 9: 104.78 – 104.93 Mb Chr 4: 53.03 – 53.16 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

ATP-binding cassette transporter ABCA1 (member 1 of human transporter sub-family ABCA), also known as the cholesterol efflux regulatory protein (CERP) is a protein which in humans is encoded by the ABCA1 gene. [5] This transporter is a major regulator of cellular cholesterol and phospholipid homeostasis.

Contents

Tangier disease

It was discovered that a mutation in the ABCA1 protein is responsible for causing Tangier disease by several groups in 1998. Gerd Schmitz's group in Germany [6] and Michael Hayden's group in British Columbia [7] were using standard genetics techniques and DNA from family pedigrees to locate the mutation. Richard Lawn's group at CV Therapeutics in Palo Alto, CA used cDNA microarrays, which were relatively new at the time, to assess gene expression profiles from cell lines created from normal and affected individuals. [8] They showed cell lines from patients with Tangier's disease showed differential regulation of the ABCA1 gene. Subsequent sequencing of the gene identified the mutations. This group received an award from the American Heart Association for their discovery. [9] Tangier disease has been identified in nearly 100 patients worldwide, and patients have a broad range of biochemical and clinical phenotypes as over 100 different mutations have been identified in ABCA1 resulting in the disease. [10]

Function

The membrane-associated protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intracellular membranes. ABC genes are divided into seven distinct subfamilies (ABCA, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the ABCA subfamily. Members of the ABCA subfamily comprise the only major ABC subfamily found exclusively in multicellular eukaryotes. With cholesterol as its substrate, this protein functions as a cholesterol efflux pump in the cellular lipid removal pathway. [11] [12]

While the complete 3D-structure of ABCA1 remains relatively unknown, there has been some determination of the c-terminus. The ABCA1 c-terminus contains a PDZ domain, responsible for mediating protein-protein interactions, as well as a VFVNFA motif essential for lipid efflux activity. [10]

Physiological role

ABCA1 mediates the efflux of cholesterol and phospholipids to lipid-poor apolipoproteins (apoA1 and apoE) (reverse cholesterol transport), which then form nascent high-density lipoproteins (HDL). It also mediates the transport of lipids between Golgi and cell membrane. Since this protein is needed throughout the body it is expressed ubiquitously as a 220 kDa protein. It is present in higher quantities in tissues that shuttle or are involved in the turnover of lipids such as the liver, the small intestine and adipose tissue. [13]

Factors that act upon the ABCA1 transporter's expression or its posttranslational modification are also molecules that are involved in its subsequent function like fatty acids, cholesterol and also cytokines and cAMP. [14] Adiponectin induces reverse cholesterol transport by an ABCA1-dependent pathway. [15] Other endogenous metabolites more loosely related to the ABCA1 functions are also reported to influence the expression of this transporter, including glucose and bilirubin. [16] [17]

Interactions between members of the apoliprotein family and ABCA1 activate multiple signalling pathways, including the JAK-STAT, PKA, and PKC pathways [18]

Overexpression of ABCA1 has been reported to induce resistance to the anti-inflammatory diarylheptanoid antioxidant curcumin. [19] Downregulation of ABCA1 in senescent macrophages disrupts the cell's ability to remove cholesterol from its cytoplasm, leading the cells to promote pathologic atherogenesis (blood vessel thickening/hardening) which "plays a central role in common age-associated diseases such as atherosclerosis, cancer, and macular degeneration" [20] Knockout mouse models of AMD treated with agonists that increase ABCA1 in loss of function and gain of function experiments demonstrated the protective role of elevating ABCA1 in regulating angiogenesis in eye disease. Human data from patients and controls were used to demonstrate the translation of mouse findings in human disease. [21]

Clinical significance

Mutations in this gene have been associated with Tangier disease and familial high-density lipoprotein deficiency. ABCA1 has been shown to be reduced in Tangier disease which features physiological deficiencies of HDL. [22] [23] Leukocytes ABCA1 gene expression is upregulated in postmenopausal women receiving hormone replacement therapy (HRP). [24] ABCA1 expression is also upregulated in tumor-associated astroctytes surrounding glioblastoma brain tumors, and is important to the tumor progression. [25] [26]

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
StatinPathway WP430.png go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
StatinPathway WP430.png go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
|alt=Statin Pathway edit]]
Statin Pathway edit
  1. The interactive pathway map can be edited at WikiPathways: "Statin_Pathway_WP430".

Interactions

ABCA1 has been shown to interact with:

See also

Related Research Articles

High-density lipoprotein (HDL) is one of the five major groups of lipoproteins. Lipoproteins are complex particles composed of multiple proteins which transport all fat molecules (lipids) around the body within the water outside cells. They are typically composed of 80–100 proteins per particle and transporting up to hundreds of fat molecules per particle.

<span class="mw-page-title-main">ATP-binding cassette transporter</span> Gene family

The ATP-binding cassette transporters are a transport system superfamily that is one of the largest and possibly one of the oldest gene families. It is represented in all extant phyla, from prokaryotes to humans. ABC transporters belong to translocases.

<span class="mw-page-title-main">Cholesteryl ester transfer protein</span> Mammalian protein found in Homo sapiens

Cholesteryl ester transfer protein (CETP), also called plasma lipid transfer protein, is a plasma protein that facilitates the transport of cholesteryl esters and triglycerides between the lipoproteins. It collects triglycerides from very-low-density (VLDL) or Chylomicrons and exchanges them for cholesteryl esters from high-density lipoproteins (HDL), and vice versa. Most of the time, however, CETP does a heteroexchange, trading a triglyceride for a cholesteryl ester or a cholesteryl ester for a triglyceride.

<span class="mw-page-title-main">ABCA12</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette sub-family A member 12 also known as ATP-binding cassette transporter 12 is a protein that in humans is encoded by the ABCA12 gene.

Tangier disease or hypoalphalipoproteinemia is an extremely rare inherited disorder characterized by a severe reduction in the amount of high density lipoprotein (HDL), often referred to as "good cholesterol", in the bloodstream. Worldwide, approximately 100 cases have even been identified.

<span class="mw-page-title-main">Liver X receptor</span> Nuclear receptor

The liver X receptor (LXR) is a member of the nuclear receptor family of transcription factors and is closely related to nuclear receptors such as the PPARs, FXR and RXR. Liver X receptors (LXRs) are important regulators of cholesterol, fatty acid, and glucose homeostasis. LXRs were earlier classified as orphan nuclear receptors, however, upon discovery of endogenous oxysterols as ligands they were subsequently deorphanized.

<span class="mw-page-title-main">Sitosterolemia</span> Medical condition

Sitosterolemia is a rare autosomal recessively inherited lipid metabolic disorder. It is characterized by hyperabsorption and decreased biliary excretion of dietary sterols. Healthy persons absorb only about 5% of dietary plant sterols, but sitosterolemia patients absorb 15% to 60% of ingested sitosterol without excreting much into the bile. The phytosterol campesterol is more readily absorbed than sitosterol.

<span class="mw-page-title-main">Apolipoprotein AI</span>

Apolipoprotein AI(ApoA-I) is a protein that in humans is encoded by the APOA1 gene. As the major component of HDL particles, it has a specific role in lipid metabolism.

<span class="mw-page-title-main">ABCB4</span> Protein-coding gene in the species Homo sapiens

The ATP-binding cassette 4 gene encodes the Multidrug resistance protein 3. ABCB4 is associated with progressive familial intrahepatic cholestasis type 3 and intrahepatic cholestasis of pregnancy.

<span class="mw-page-title-main">ABCA4</span> Mammalian protein found in Homo sapiens

ATP-binding cassette, sub-family A (ABC1), member 4, also known as ABCA4 or ABCR, is a protein which in humans is encoded by the ABCA4 gene.

<span class="mw-page-title-main">Multidrug resistance-associated protein 2</span> Protein-coding gene in the species Homo sapiens

Multidrug resistance-associated protein 2 (MRP2) also called canalicular multispecific organic anion transporter 1 (cMOAT) or ATP-binding cassette sub-family C member 2 (ABCC2) is a protein that in humans is encoded by the ABCC2 gene.

<span class="mw-page-title-main">ABCG1</span> Mammalian protein found in Homo sapiens

ATP-binding cassette sub-family G member 1 is a protein that in humans is encoded by the ABCG1 gene. It is a homolog of the well-known Drosophila gene white.

<span class="mw-page-title-main">ABCG5</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette sub-family G member 5 is a protein that in humans is encoded by the ABCG5 gene.

<span class="mw-page-title-main">ABCG8</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette sub-family G member 8 is a protein that in humans is encoded by the ABCG8 gene.

<span class="mw-page-title-main">ABCA2</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette sub-family A member 2 is a protein that in humans is encoded by the ABCA2 gene.

<span class="mw-page-title-main">ABCA7</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette sub-family A member 7 is a protein that in humans is encoded by the ABCA7 gene.

<span class="mw-page-title-main">ABCA3</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette sub-family A member 3 is a protein that in humans is encoded by the ABCA3 gene.

<span class="mw-page-title-main">ZNF202</span> Protein-coding gene in the species Homo sapiens

Zinc finger protein 202 is a transcription factor first associated with breast cancer. It is a protein that, in humans, is encoded by the ZNF202 gene.

<span class="mw-page-title-main">ABCG4</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette sub-family G member 4 is a protein that in humans is encoded by the ABCG4 gene.

<span class="mw-page-title-main">ABCA5</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette, sub-family A (ABC1), member 5 is a protein that in humans is encoded by the ABCA5 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000165029 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000015243 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Luciani MF, Denizot F, Savary S, Mattei MG, Chimini G (May 1994). "Cloning of two novel ABC transporters mapping on human chromosome 9". Genomics. 21 (1): 150–159. doi:10.1006/geno.1994.1237. PMID   8088782.
  6. Bodzioch M, Orsó E, Klucken J, Langmann T, Böttcher A, Diederich W, et al. (August 1999). "The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease". Nature Genetics. 22 (4): 347–351. doi:10.1038/11914. PMID   10431237. S2CID   26890624.
  7. Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, et al. (August 1999). "Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency". Nature Genetics. 22 (4): 336–345. doi:10.1038/11905. PMID   10431236. S2CID   1497231.
  8. Lawn RM, Wade DP, Garvin MR, Wang X, Schwartz K, Porter JG, et al. (October 1999). "The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway". The Journal of Clinical Investigation. 104 (8): R25–R31. doi:10.1172/JCI8119. PMC   481052 . PMID   10525055.
  9. "American Heart Association Selects CV Therapeutics' Discovery of Role Of 'Good' Cholesterol-Regulating Gene as Top Ten 1999 Research Advances In Heart Disease" (Press release). CV Therapeutics; Incyte Pharmaceuticals. January 3, 2000. Retrieved May 28, 2018.
  10. 1 2 Brunham LR, Singaraja RR, Hayden MR (2006). "Variations on a gene: rare and common variants in ABCA1 and their impact on HDL cholesterol levels and atherosclerosis". Annual Review of Nutrition. 26: 105–129. doi:10.1146/annurev.nutr.26.061505.111214. PMID   16704350.
  11. "Entrez Gene: ABCA1 ATP-binding cassette, sub-family A (ABC1), member 1".
  12. Schmitz G, Langmann T (April 2001). "Structure, function and regulation of the ABC1 gene product". Current Opinion in Lipidology. 12 (2): 129–140. doi:10.1097/00041433-200104000-00006. PMID   11264984. S2CID   23837673.
  13. Wagner E, Basso F, Kim CS, Amar MJ (2014). "ABC lipid transporters". AccessScience. McGraw-Hill Education. doi:10.1036/1097-8542.801530.
  14. Yokoyama S (February 2006). "ABCA1 and biogenesis of HDL". Journal of Atherosclerosis and Thrombosis. 13 (1): 1–15. doi: 10.5551/jat.13.1 . PMID   16505586.
  15. Hafiane A, Gasbarrino K, Daskalopoulou SS (November 2019). "The role of adiponectin in cholesterol efflux and HDL biogenesis and metabolism". Metabolism. 100: 153953. doi:10.1016/j.metabol.2019.153953. PMID   31377319. S2CID   203413137.
  16. Mauerer R, Ebert S, Langmann T (February 2009). "High glucose, unsaturated and saturated fatty acids differentially regulate expression of ATP-binding cassette transporters ABCA1 and ABCG1 in human macrophages". Experimental & Molecular Medicine. 41 (2): 126–132. doi:10.3858/emm.2009.41.2.015. PMC   2679329 . PMID   19287193.
  17. Wang D, Tosevska A, Heiß EH, Ladurner A, Mölzer C, Wallner M, et al. (April 2017). "Bilirubin Decreases Macrophage Cholesterol Efflux and ATP-Binding Cassette Transporter A1 Protein Expression". Journal of the American Heart Association. 6 (5): e005520. doi:10.1161/JAHA.117.005520. PMC   5524097 . PMID   28455345.
  18. Luu W, Sharpe LJ, Gelissen IC, Brown AJ (August 2013). "The role of signalling in cellular cholesterol homeostasis". IUBMB Life. 65 (8): 675–684. doi: 10.1002/iub.1182 . PMID   23847008. S2CID   23391447.
  19. Bachmeier BE, Iancu CM, Killian PH, Kronski E, Mirisola V, Angelini G, et al. (December 2009). "Overexpression of the ATP binding cassette gene ABCA1 determines resistance to Curcumin in M14 melanoma cells". Molecular Cancer. 8: 129. doi:10.1186/1476-4598-8-129. PMC   2804606 . PMID   20030852.
  20. Sene A, Khan AA, Cox D, Nakamura RE, Santeford A, Kim BM, et al. (April 2013). "Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration". Cell Metabolism. 17 (4): 549–561. doi:10.1016/j.cmet.2013.03.009. PMC   3640261 . PMID   23562078.
  21. http://www.faqs.org/patents/app/20130317090%5B%5D%5B%5D
  22. Ordovas JM (March 2000). "ABC1: the gene for Tangier disease and beyond". Nutrition Reviews. 58 (3 Pt 1): 76–79. doi: 10.1111/j.1753-4887.2000.tb01843.x . PMID   10812922.
  23. Oram JF, Vaughan AM (June 2000). "ABCA1-mediated transport of cellular cholesterol and phospholipids to HDL apolipoproteins". Current Opinion in Lipidology. 11 (3): 253–260. doi:10.1097/00041433-200006000-00005. PMID   10882340.
  24. Darabi M, Rabbani M, Ani M, Zarean E, Panjehpour M, Movahedian A (September 2011). "Increased leukocyte ABCA1 gene expression in post-menopausal women on hormone replacement therapy". Gynecological Endocrinology. 27 (9): 701–705. doi:10.3109/09513590.2010.507826. PMID   20807164. S2CID   203464.
  25. Perelroizen R, Philosof B, Budick-Harmelin N, Chernobylsky T, Ron A, Katzir R, et al. (July 2022). "Astrocyte immunometabolic regulation of the tumour microenvironment drives glioblastoma pathogenicity". Brain. 145 (9): 3288–3307. doi: 10.1093/brain/awac222 . PMID   35899587.
  26. Murk K, Hülse R (August 2022). "Forced but effective partners in crime: How astrocytes drive the progression of glioblastoma". Brain. 145 (9): 2952–2954. doi: 10.1093/brain/awac302 . PMID   35978482.
  27. Fitzgerald ML, Morris AL, Rhee JS, Andersson LP, Mendez AJ, Freeman MW (September 2002). "Naturally occurring mutations in the largest extracellular loops of ABCA1 can disrupt its direct interaction with apolipoprotein A-I". The Journal of Biological Chemistry. 277 (36): 33178–33187. doi: 10.1074/jbc.M204996200 . PMID   12084722.
  28. Buechler C, Bared SM, Aslanidis C, Ritter M, Drobnik W, Schmitz G (November 2002). "Molecular and functional interaction of the ATP-binding cassette transporter A1 with Fas-associated death domain protein". The Journal of Biological Chemistry. 277 (44): 41307–41310. doi: 10.1074/jbc.C200436200 . PMID   12235128.
  29. Buechler C, Boettcher A, Bared SM, Probst MC, Schmitz G (May 2002). "The carboxyterminus of the ATP-binding cassette transporter A1 interacts with a beta2-syntrophin/utrophin complex". Biochemical and Biophysical Research Communications. 293 (2): 759–765. doi:10.1016/S0006-291X(02)00303-0. PMID   12054535.
  30. Shimizu Y, Iwai S, Hanaoka F, Sugasawa K (January 2003). "Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase". The EMBO Journal. 22 (1): 164–173. doi:10.1093/emboj/cdg016. PMC   140069 . PMID   12505994.

Further reading