TAP2

Last updated
TAP2
Identifiers
Aliases TAP2 , ABC18, ABCB3, APT2, D6S217E, PSF-2, PSF2, RING11, transporter 2, ATP-binding cassette, sub-family B (MDR/TAP), transporter 2, ATP binding cassette subfamily B member
External IDs OMIM: 170261 MGI: 98484 HomoloGene: 37323 GeneCards: TAP2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_018833
NM_000544
NM_001290043

NM_011530

RefSeq (protein)

NP_000535
NP_001276972
NP_061313

NP_035660

Location (UCSC) Chr 6: 32.82 – 32.84 Mb Chr 17: 34.42 – 34.44 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

TAP2 is a gene in humans that encodes the protein Antigen peptide transporter 2. [5] [6] [7]

Contents

Function

The membrane-associated protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the MDR/TAP subfamily. Members of the MDR/TAP subfamily are involved in multidrug resistance. This gene is located 7 kb telomeric to gene family member ABCB2 (TAP1). The protein encoded by this gene is involved in antigen presentation. This protein forms a heterodimer with ABCB2 in order to transport peptides from the cytoplasm to the endoplasmic reticulum. Mutations in this gene may be associated with ankylosing spondylitis, insulin-dependent diabetes mellitus, schizophrenia, [8] and celiac disease. Alternative splicing of this gene produces two products which differ in peptide selectivity and level of restoration of surface expression of MHC class I molecules. [9]

See also

Related Research Articles

<span class="mw-page-title-main">MHC class I</span> Protein of the immune system

MHC class I molecules are one of two primary classes of major histocompatibility complex (MHC) molecules and are found on the cell surface of all nucleated cells in the bodies of vertebrates. They also occur on platelets, but not on red blood cells. Their function is to display peptide fragments of proteins from within the cell to cytotoxic T cells; this will trigger an immediate response from the immune system against a particular non-self antigen displayed with the help of an MHC class I protein. Because MHC class I molecules present peptides derived from cytosolic proteins, the pathway of MHC class I presentation is often called cytosolic or endogenous pathway.

<span class="mw-page-title-main">HLA-DRA</span> Protein-coding gene in the species Homo sapiens

HLA class II histocompatibility antigen, DR alpha chain is a protein that in humans is encoded by the HLA-DRA gene. HLA-DRA encodes the alpha subunit of HLA-DR. Unlike the alpha chains of other Human MHC class II molecules, the alpha subunit is practically invariable. However it can pair with, in any individual, the beta chain from 3 different DR beta loci, DRB1, and two of any DRB3, DRB4, or DRB5 alleles. Thus there is the potential that any given individual can form 4 different HLA-DR isoforms.

Bare lymphocyte syndrome is a condition caused by mutations in certain genes of the major histocompatibility complex or involved with the processing and presentation of MHC molecules. It is a form of severe combined immunodeficiency.

<span class="mw-page-title-main">HLA-A</span> Protein-coding gene in the species Homo sapiens

HLA-A is a group of human leukocyte antigens (HLA) that are encoded by the HLA-A locus, which is located at human chromosome 6p21.3. HLA is a major histocompatibility complex (MHC) antigen specific to humans. HLA-A is one of three major types of human MHC class I transmembrane proteins. The others are HLA-B and HLA-C. The protein is a heterodimer, and is composed of a heavy α chain and smaller β chain. The α chain is encoded by a variant HLA-A gene, and the β chain (β2-microglobulin) is an invariant β2 microglobulin molecule. The β2 microglobulin protein is encoded by the B2M gene, which is located at chromosome 15q21.1 in humans.

<span class="mw-page-title-main">HLA-E</span> Protein-coding gene in the species Homo sapiens

HLA class I histocompatibility antigen, alpha chain E (HLA-E) also known as MHC class I antigen E is a protein that in humans is encoded by the HLA-E gene. The human HLA-E is a non-classical MHC class I molecule that is characterized by a limited polymorphism and a lower cell surface expression than its classical paralogues. The functional homolog in mice is called Qa-1b, officially known as H2-T23.

<span class="mw-page-title-main">Minor histocompatibility antigen</span>

Minor histocompatibility antigen are peptides presented on the cellular surface of donated organs that are known to give an immunological response in some organ transplants. They cause problems of rejection less frequently than those of the major histocompatibility complex (MHC). Minor histocompatibility antigens (MiHAs) are diverse, short segments of proteins and are referred to as peptides. These peptides are normally around 9-12 amino acids in length and are bound to both the major histocompatibility complex (MHC) class I and class II proteins. Peptide sequences can differ among individuals and these differences arise from SNPs in the coding region of genes, gene deletions, frameshift mutations, or insertions. About a third of the characterized MiHAs come from the Y chromosome. Prior to becoming a short peptide sequence, the proteins expressed by these polymorphic or diverse genes need to be digested in the proteasome into shorter peptides. These endogenous or self peptides are then transported into the endoplasmic reticulum with a peptide transporter pump called TAP where they encounter and bind to the MHC class I molecule. This contrasts with MHC class II molecules's antigens which are peptides derived from phagocytosis/endocytosis and molecular degradation of non-self entities' proteins, usually by antigen-presenting cells. MiHA antigens are either ubiquitously expressed in most tissue like skin and intestines or restrictively expressed in the immune cells.

<span class="mw-page-title-main">Tapasin</span> Type of protein

TAP-associated glycoprotein, also known as tapasin or TAPBP, is a protein that in humans is encoded by the TAPBP gene.

<span class="mw-page-title-main">TAP1</span> Protein-coding gene in the species Homo sapiens

Transporter associated with antigen processing 1 (TAP1) is a protein that in humans is encoded by the TAP1 gene. A member of the ATP-binding cassette transporter family, it is also known as ABCB2.

<span class="mw-page-title-main">Major histocompatibility complex, class II, DQ alpha 1</span> Protein-coding gene in the species Homo sapiens

Major histocompatibility complex, class II, DQ alpha 1, also known as HLA-DQA1, is a human gene present on short arm of chromosome 6 (6p21.3) and also denotes the genetic locus which contains this gene. The protein encoded by this gene is one of two proteins that are required to form the DQ heterodimer, a cell surface receptor essential to the function of the immune system.

<span class="mw-page-title-main">HLA-DPB1</span> Protein-coding gene in the species Homo sapiens

HLA class II histocompatibility antigen, DP(W2) beta chain is a protein that in humans is encoded by the HLA-DPB1 gene.

<span class="mw-page-title-main">HLA-DRB3</span> Protein-coding gene in the species Homo sapiens

HLA class II histocompatibility antigen, DRB3-1 beta chain is a protein that in humans is encoded by the HLA-DRB3 gene.

<span class="mw-page-title-main">HLA-F</span> Protein-coding gene in the species Homo sapiens

HLA class I histocompatibility antigen, alpha chain F is a protein that in humans is encoded by the HLA-F gene. It is an empty intracellular molecule that encodes a non-classical heavy chain anchored to the membrane and forming a heterodimer with a β-2 microglobulin light chain. It belongs to the HLA class I heavy chain paralogues that separate from most of the HLA heavy chains. HLA-F is localized in the endoplasmic reticulum and Golgi apparatus, and is also unique in the sense that it exhibits few polymorphisms in the human population relative to the other HLA genes; however, there have been found different isoforms from numerous transcript variants found for the HLA-F gene. Its pathways include INF-gamma signaling and CDK-mediated phosphorylation and removal of the Saccharomycescerevisiae Cdc6 protein, which is crucial for functional DNA replication.

<span class="mw-page-title-main">HLA-DMB</span> Protein-coding gene in the species Homo sapiens

HLA class II histocompatibility antigen, DM beta chain is a protein that in humans is encoded by the HLA-DMB gene.

<span class="mw-page-title-main">HLA-DMA</span> Protein-coding gene in the species Homo sapiens

HLA class II histocompatibility antigen, DM alpha chain is a protein that in humans is encoded by the HLA-DMA gene.

<span class="mw-page-title-main">HLA-DOA</span> Protein-coding gene in the species Homo sapiens

HLA class II histocompatibility antigen, DO alpha chain is a protein that in humans is encoded by the HLA-DOA gene.

<span class="mw-page-title-main">HLA-DOB</span> Protein-coding gene in the species Homo sapiens

HLA class II histocompatibility antigen, DO beta chain is a protein that in humans is encoded by the HLA-DOB gene.

<span class="mw-page-title-main">HM13</span> Protein-coding gene in the species Homo sapiens

Minor histocompatibility antigen H13 is a protein that in humans is encoded by the HM13 gene.

<span class="mw-page-title-main">ABCB9</span> Protein-coding gene in humans

ATP-binding cassette sub-family B member 9 is a protein that in humans is encoded by the ABCB9 gene.

<span class="mw-page-title-main">HLA-DQA2</span> Protein-coding gene in the species Homo sapiens

HLA class II histocompatibility antigen, DQ(6) alpha chain is a protein that in humans is encoded by the HLA-DQA2 gene. Also known as HLA-DXA or DAAP-381D23.2, it is part of the human leucocyte antigen system.

<span class="mw-page-title-main">ABCB8</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette sub-family B member 8, mitochondrial is a protein that in humans is encoded by the ABCB8 gene.

References

  1. 1 2 3 ENSG00000206299, ENSG00000228582, ENSG00000206235, ENSG00000225967, ENSG00000237599, ENSG00000223481, ENSG00000232326 GRCh38: Ensembl release 89: ENSG00000204267, ENSG00000206299, ENSG00000228582, ENSG00000206235, ENSG00000225967, ENSG00000237599, ENSG00000223481, ENSG00000232326 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000024339 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Bodmer JG, Marsh SG, Albert ED, Bodmer WF, Dupont B, Erlich HA, Mach B, Mayr WR, Parham P, Sasazuki T (Oct 1992). "Nomenclature for factors of the HLA system, 1991. WHO Nomenclature Committee for factors of the HLA system". Tissue Antigens. 39 (4): 161–73. doi: 10.1111/j.1399-0039.1992.tb01932.x . PMID   1529427.
  6. Bahram S, Arnold D, Bresnahan M, Strominger JL, Spies T (Dec 1991). "Two putative subunits of a peptide pump encoded in the human major histocompatibility complex class II region". Proc Natl Acad Sci U S A. 88 (22): 10094–8. Bibcode:1991PNAS...8810094B. doi: 10.1073/pnas.88.22.10094 . PMC   52874 . PMID   1946428.
  7. Hahn Y, Lee B (Feb 2006). "Human-specific nonsense mutations identified by genome sequence comparisons". Hum Genet. 119 (1–2): 169–78. doi:10.1007/s00439-005-0125-6. PMID   16395595. S2CID   21059468.
  8. Yu H (2014). "Protein-interaction-network-based analysis for genome-wide association analysis of schizophrenia in Han Chinese population". Journal of Psychiatric Research. 50: 73–8. doi:10.1016/j.jpsychires.2013.11.014. PMID   24365204.
  9. "Entrez Gene: TAP2 transporter 2, ATP-binding cassette, sub-family B (MDR/TAP)".

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.