ABCC9

Last updated

ABCC9
Identifiers
Aliases ABCC9 , ABC37, ATFB12, CANTU, CMD1O, SUR2, ATP binding cassette subfamily C member 9, IDMYS
External IDs OMIM: 601439; MGI: 1352630; HomoloGene: 56521; GeneCards: ABCC9; OMA:ABCC9 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005691
NM_020297
NM_020298
NM_001377273
NM_001377274

Contents

RefSeq (protein)

NP_005682
NP_064693
NP_001364202
NP_001364203

NP_001038185
NP_001297072
NP_035641
NP_066378
NP_066379

Location (UCSC) Chr 12: 21.8 – 21.94 Mb Chr 6: 142.53 – 142.65 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

ATP-binding cassette, sub-family C member 9 (ABCC9) also known as sulfonylurea receptor 2 (SUR2) is an ATP-binding cassette transporter that in humans is encoded by the ABCC9 gene. [5] [6]

Function

The protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the MRP subfamily which is involved in multi-drug resistance. This protein is thought to form ATP-sensitive potassium channels in cardiac, skeletal, and vascular and non-vascular smooth muscle. Protein structure suggests a role as the drug-binding channel-modulating subunit of the extrapancreatic ATP-sensitive potassium channels. Alternative splicing of this gene results in several products, two of which result from differential usage of two terminal exons and one of which results from exon deletion. [7]

Clinical significance

The gene has been associated with dilated cardiomyopathy and Cantú syndrome. [6] [8]

A variant has also been associated with circa 25 minutes more sleep per day in humans; lack thereof has been associated with three hours less sleep per day in fruit flies. [9] [10]

A study involving 12,901 individuals from Iceland demonstrated a link between variants of the ABCC9 gene and higher vocal pitch in both men and women. This discovery establishes ABCC9 as the first identified genetic locus associated with vocal pitch. [11]

See also

Related Research Articles

An ATP-sensitive potassium channel is a type of potassium channel that is gated by intracellular nucleotides, ATP and ADP. ATP-sensitive potassium channels are composed of Kir6.x-type subunits and sulfonylurea receptor (SUR) subunits, along with additional components. KATP channels are widely distributed in plasma membranes; however some may also be found on subcellular membranes. These latter classes of KATP channels can be classified as being either sarcolemmal ("sarcKATP"), mitochondrial ("mitoKATP"), or nuclear ("nucKATP").

In molecular biology, the sulfonylurea receptors (SUR) are membrane proteins which are the molecular targets of the sulfonylurea class of antidiabetic drugs whose mechanism of action is to promote insulin release from pancreatic beta cells. More specifically, SUR proteins are subunits of the inward-rectifier potassium ion channels Kir6.x. The association of four Kir6.x and four SUR subunits form an ion conducting channel commonly referred to as the KATP channel.

K<sub>ir</sub>6.2 Protein-coding gene in the species Homo sapiens

Kir6.2 is a major subunit of the ATP-sensitive K+ channel, a lipid-gated inward-rectifier potassium ion channel. The gene encoding the channel is called KCNJ11 and mutations in this gene are associated with congenital hyperinsulinism.

<span class="mw-page-title-main">ABCG2</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette super-family G member 2 is a protein that in humans is encoded by the ABCG2 gene. ABCG2 has also been designated as CDw338. ABCG2 is a translocation protein used to actively pump drugs and other compounds against their concentration gradient using the bonding and hydrolysis of ATP as the energy source.

<span class="mw-page-title-main">ABCC8</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette transporter sub-family C member 8 is a protein that in humans is encoded by the ABCC8 gene. ABCC8 orthologs have been identified in all mammals for which complete genome data are available.

<span class="mw-page-title-main">Multidrug resistance-associated protein 2</span> Protein found in humans

Multidrug resistance-associated protein 2 (MRP2) also called canalicular multispecific organic anion transporter 1 (cMOAT) or ATP-binding cassette sub-family C member 2 (ABCC2) is a protein that in humans is encoded by the ABCC2 gene.

<span class="mw-page-title-main">KCNJ6</span> Protein-coding gene in the species Homo sapiens

G protein-activated inward rectifier potassium channel 2 is a protein that in humans is encoded by the KCNJ6 gene. Mutation in KCNJ6 gene has been proposed to be the cause of Keppen-Lubinsky Syndrome (KPLBS).

<span class="mw-page-title-main">KCNJ8</span> Protein-coding gene in humans

Potassium inwardly-rectifying channel, subfamily J, member 8, also known as KCNJ8, is a human gene encoding the Kir6.1 protein. A mutation in KCNJ8 has been associated with cardiac arrest in the early repolarization syndrome.

<span class="mw-page-title-main">ABCA2</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette sub-family A member 2 is a protein that in humans is encoded by the ABCA2 gene.

<span class="mw-page-title-main">KCNJ5</span> Protein-coding gene in the species Homo sapiens

G protein-activated inward rectifier potassium channel 4(GIRK-4) is a protein that in humans is encoded by the KCNJ5 gene and is a type of G protein-gated ion channel.

<span class="mw-page-title-main">ABCC11</span> Mammalian protein found in Homo sapiens

ATP-binding cassette transporter sub-family C member 11, also MRP8, is a membrane transporter that exports certain molecules from inside a cell. It is a protein that in humans is encoded by gene ABCC11.

<span class="mw-page-title-main">ABCA7</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette sub-family A member 7 is a protein that in humans is encoded by the ABCA7 gene.

<span class="mw-page-title-main">ABCF2</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette sub-family F member 2 is a protein that in humans is encoded by the ABCF2 gene.

<span class="mw-page-title-main">ENSA (gene)</span> Protein-coding gene in the species Homo sapiens

Alpha-endosulfine is a protein that in humans is encoded by the ENSA gene.

<span class="mw-page-title-main">ABCB6</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette super-family B member 6, mitochondrial is a protein that in humans is encoded by the ABCB6 gene.

<span class="mw-page-title-main">ABCF1</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette sub-family F member 1 is a protein that in humans is encoded by the ABCF1 gene.

<span class="mw-page-title-main">ABCC10</span> Protein-coding gene in the species Homo sapiens

Multidrug resistance-associated protein 7 is a protein that in humans is encoded by the ABCC10 gene.

<span class="mw-page-title-main">ABCG4</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette sub-family G member 4 is a protein that in humans is encoded by the ABCG4 gene.

<span class="mw-page-title-main">ABCA8</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette sub-family A member 8 is a protein that in humans is encoded by the ABCA8 gene.

<span class="mw-page-title-main">Cantú syndrome</span> Medical condition

Cantú syndrome is a rare condition characterized by hypertrichosis, osteochondrodysplasia, and cardiomegaly. Less than 50 cases have been described in the literature; they are associated with a mutation in the ABCC9-gene that codes for the ABCC9-protein.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000069431 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000030249 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Aguilar-Bryan L, Clement JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J (January 1998). "Toward understanding the assembly and structure of KATP channels". Physiological Reviews. 78 (1): 227–245. doi:10.1152/physrev.1998.78.1.227. PMID   9457174. S2CID   11851627.
  6. 1 2 Bienengraeber M, Olson TM, Selivanov VA, Kathmann EC, O'Cochlain F, Gao F, et al. (April 2004). "ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating". Nature Genetics. 36 (4): 382–387. doi:10.1038/ng1329. PMC   1995438 . PMID   15034580.
  7. "Entrez Gene: ABCC9, ATP-binding cassette, sub-family C (CFTR/MRP), member 9".
  8. Harakalova M, van Harssel JJ, Terhal PA, van Lieshout S, Duran K, Renkens I, et al. (May 2012). "Dominant missense mutations in ABCC9 cause Cantú syndrome". Nature Genetics. 44 (7): 793–796. doi:10.1038/ng.2324. PMID   22610116. S2CID   205345718.
  9. "The ABCC9 of sleep: A genetic factor regulates how long we sleep".
  10. Allebrandt KV, Amin N, Müller-Myhsok B, Esko T, Teder-Laving M, Azevedo RV, et al. (January 2013). "A K(ATP) channel gene effect on sleep duration: from genome-wide association studies to function in Drosophila". Molecular Psychiatry. 18 (1): 122–132. doi: 10.1038/mp.2011.142 . PMID   22105623.
  11. Gisladottir RS, Helgason A, Halldorsson BV, Helgason H, Borsky M, Chien YR, et al. (June 2023). "Sequence variants affecting voice pitch in humans". Science Advances. 9 (23): eabq2969. Bibcode:2023SciA....9.2969G. doi:10.1126/sciadv.abq2969. PMC   10256171 . PMID   37294764.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.