Blood cell

Last updated
Diagram showing the development of different blood cells from hematopoietic stem cells to mature cells. Hematopoiesis simple.svg
Diagram showing the development of different blood cells from hematopoietic stem cells to mature cells.

A blood cell (also called a hematopoietic cell, hemocyte, or hematocyte) is a cell produced through hematopoiesis and found mainly in the blood. Major types of blood cells include red blood cells (erythrocytes), white blood cells (leukocytes), and platelets (thrombocytes). Together, these three kinds of blood cells add up to a total 45% of the blood tissue by volume, with the remaining 55% of the volume composed of plasma, the liquid component of blood. [1]

Contents

Red blood cells

Red and white human blood cells as seen under a microscope using a blue slide stain Blood cells 090304-F-5951M-108.jpg
Red and white human blood cells as seen under a microscope using a blue slide stain
The darker red blood syringes have deoxygenated blood, whereas the brighter red have oxygenated blood. Venous and arterial blood.jpg
The darker red blood syringes have deoxygenated blood, whereas the brighter red have oxygenated blood.

Red blood cells or erythrocytes primarily carry oxygen and collect carbon dioxide through the use of hemoglobin. [2] Hemoglobin is an iron-containing protein that gives red blood cells their color and facilitates transportation of oxygen from the lungs to tissues and carbon dioxide from tissues to the lungs to be exhaled. [3] Red blood cells are the most abundant cell in the blood, accounting for about 40–45% of its volume. Red blood cells are circular, biconcave, disk-shaped and deformable to allow them to squeeze through narrow capillaries. They do not have a nucleus. Red blood cells are much smaller than most other human cells.

RBCs are formed in the red bone marrow from hematopoietic stem cells in a process known as erythropoiesis. In adults, about 2.4 million RBCs are produced each second. The normal RBCs count is 4.5 to 5 millions per cu.mm. RBCs have a lifespan of approximately 100-120 days. After they have completed their lifespan, they are removed from the bloodstream by the spleen.

Mature red blood cells are unique among cells in the human body in that they lack a nucleus (although erythroblasts do have a nucleus).

The condition of having too few red blood cells is known as anemia, while having too many is polycythemia.

Erythrocyte sedimentation rate (ESR) is the rate at which RBCs sink to the bottom (when placed in a vertical column after adding an anticoagulant). Normal values of ESR are:

• 3 to 5 mm per hour in males.

• 4 to 7 mm per hour in females.

White blood cells

Artificially colored electron micrograph of blood cells. From left to right: erythrocyte, thrombocyte, leukocyte. Red White Blood cells.jpg
Artificially colored electron micrograph of blood cells. From left to right: erythrocyte, thrombocyte, leukocyte.

White blood cells or leukocytes, are cells of the immune system involved in defending the body against both infectious disease and foreign materials. They are produced and derived from multipotent cells in the bone marrow known as hematopoietic stem cells. Leukocytes are found throughout the body, including the blood and lymphatic system. There are a variety of types of white blood cells that serve specific roles in the human immune system. WBCs constitute approximately 1% of the blood volume. [4]

White blood cells are divided into granulocytes and agranulocytes, distinguished by the presence or absence of granules in the cytoplasm. Granulocytes include basophils, eosinophils, neutrophils, and mast cells. Agranulocytes include lymphocytes and monocytes.

The condition of having too few white blood cells is leukopenia, while having too many is leukocytosis. There are individual terms for the lack or overabundance of specific types of white blood cells. The number of white blood cells in circulation is commonly increased in the incidence of infection. [5] Many hematological cancers are based on the inappropriate production of white blood cells.

Platelets

Platelets, or thrombocytes, are very small, irregularly shaped clear cell fragments, 2–3 μm in diameter, which derive from fragmentation of megakaryocytes. The average lifespan of a platelet is normally just 5 to 9 days. Platelets are a natural source of growth factors. They circulate in the blood of mammals and are involved in hemostasis, leading to the formation of blood clots. Platelets release thread-like fibers to form these clots.

The normal range (99% of population analyzed) for platelets is 150,000 to 450,000 per cubic millimeter. [6] If the number of platelets is too low, excessive bleeding can occur. However, if the number of platelets is too high, blood clots can form thrombosis, which may obstruct blood vessels and result in such events as a stroke, myocardial infarction, pulmonary embolism, or blockage of blood vessels to other parts of the body, such as the extremities of the arms or legs. An abnormality or disease of the platelets is called a thrombocytopathy, which can be either a low number of platelets (thrombocytopenia), a decrease in function of platelets (thrombasthenia), or an increase in the number of platelets (thrombocytosis). There are disorders that reduce the number of platelets, such as heparin-induced thrombocytopenia (HIT) or thrombotic thrombocytopenic purpura (TTP), that typically cause thromboses, or clots, instead of bleeding.

Platelets release a multitude of growth factors including platelet-derived growth factor (PDGF), a potent chemotactic agent, and TGF beta, which stimulates the deposition of extracellular matrix. Both of these growth factors have been shown to play a significant role in the repair and regeneration of connective tissues. Other healing-associated growth factors produced by platelets include basic fibroblast growth factor (bFGF), insulin-like growth factor 1 (IGF-1), platelet-derived epidermal growth factor, and vascular endothelial growth factor (VEGF). Local application of these factors in increased concentrations through platelet-rich plasma (PRP) has been used as an adjunct to wound healing for several decades.

Complete blood count

A complete blood count (CBC) is a test panel requested by a doctor or other medical professional that gives information about the cells in a patient's blood. A scientist or lab technician performs the requested testing and provides the requesting medical professional with the results of the CBC. In the past, counting the cells in a patient's blood was performed manually, by viewing a slide prepared with a sample of the patient's blood under a microscope. Today, this process is generally automated by use of an automated analyzer, with only approximately 10-20% of samples now being examined manually. Abnormally high or low counts may indicate the presence of many forms of disease, and hence blood counts are amongst the most commonly performed blood tests in medicine, as they can provide an overview of a patient's general health status.

Discovery

In 1658 Dutch naturalist Jan Swammerdam was the first person to observe red blood cells under a microscope, and in 1695, microscopist Antoni van Leeuwenhoek, also Dutch, was the first to draw an illustration of "red corpuscles", as they were called. No further blood cells were discovered until 1842 when French physician Alfred Donné discovered platelets. The following year leukocytes were first observed by Gabriel Andral, a French professor of medicine, and William Addison, a British physician, simultaneously. Both men believed that both red and white cells were altered in disease. With these discoveries, hematology, a new field of medicine, was established. Even though agents for staining tissues and cells were available, almost no advances were made in knowledge about the morphology of blood cells until 1879, when Paul Ehrlich published his technique for staining blood films and his method for differential blood cell counting. [7]

Related Research Articles

<span class="mw-page-title-main">Blood</span> Organic fluid which transports nutrients throughout the organism

Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells.

<span class="mw-page-title-main">Haematopoiesis</span> Formation of blood cellular components

Haematopoiesis is the formation of blood cellular components. All cellular blood components are derived from haematopoietic stem cells. In a healthy adult human, roughly ten billion to a hundred billion new blood cells are produced per day, in order to maintain steady state levels in the peripheral circulation.

<span class="mw-page-title-main">Myelodysplastic syndrome</span> Diverse collection of blood-related cancers

A myelodysplastic syndrome (MDS) is one of a group of cancers in which blood cells in the bone marrow do not mature, and as a result, do not develop into healthy blood cells. Early on, no symptoms typically are seen. Later, symptoms may include fatigue, shortness of breath, bleeding disorders, anemia, or frequent infections. Some types may develop into acute myeloid leukemia.

<span class="mw-page-title-main">Platelet</span> Component of blood aiding in coagulation

Platelets or thrombocytes are a blood component whose function is to react to bleeding from blood vessel injury by clumping, thereby initiating a blood clot. Platelets have no cell nucleus; they are fragments of cytoplasm derived from the megakaryocytes of the bone marrow or lung, which then enter the circulation. Platelets are found only in mammals, whereas in other vertebrates, thrombocytes circulate as intact mononuclear cells.

<span class="mw-page-title-main">Automated analyser</span>

An automated analyser is a medical laboratory instrument designed to measure various substances and other characteristics in a number of biological samples quickly, with minimal human assistance. These measured properties of blood and other fluids may be useful in the diagnosis of disease.

<span class="mw-page-title-main">Megakaryocyte</span> Bone marrow cell which produces platelets

A megakaryocyte is a large bone marrow cell with a lobated nucleus that produces blood platelets (thrombocytes), which are necessary for normal clotting. In humans, megakaryocytes usually account for 1 out of 10,000 bone marrow cells, but can increase in number nearly 10-fold during the course of certain diseases. Owing to variations in combining forms and spelling, synonyms include megalokaryocyte and megacaryocyte.

Bone marrow suppression also known as myelotoxicity or myelosuppression, is the decrease in production of cells responsible for providing immunity (leukocytes), carrying oxygen (erythrocytes), and/or those responsible for normal blood clotting (thrombocytes). Bone marrow suppression is a serious side effect of chemotherapy and certain drugs affecting the immune system such as azathioprine. The risk is especially high in cytotoxic chemotherapy for leukemia. In the case of non-small-cell lung cancer, myelosuppression predisposition was shown to be modulated by enhancer mutations.

<span class="mw-page-title-main">Granulocyte</span> Category of white blood cells

Granulocytes are cells in the innate immune system characterized by the presence of specific granules in their cytoplasm. Such granules distinguish them from the various agranulocytes. All myeloblastic granulocytes are polymorphonuclear, that is, they have varying shapes (morphology) of the nucleus ; and are referred to as polymorphonuclear leukocytes. In common terms, polymorphonuclear granulocyte refers specifically to "neutrophil granulocytes", the most abundant of the granulocytes; the other types have varying morphology. Granulocytes are produced via granulopoiesis in the bone marrow.

<span class="mw-page-title-main">Essential thrombocythemia</span> Overproduction of platelets in the bone marrow

In hematology, essential thrombocythemia (ET) is a rare chronic blood cancer characterised by the overproduction of platelets (thrombocytes) by megakaryocytes in the bone marrow. It may, albeit rarely, develop into acute myeloid leukemia or myelofibrosis. It is one of the blood cancers wherein the bone marrow produces too many white or red blood cells, or platelets.

<span class="mw-page-title-main">Apheresis</span> Medical techniques to separate one or more components of blood

Apheresis is a medical technology in which the blood of a person is passed through an apparatus that separates out one particular constituent and returns the remainder to the circulation. It is thus an extracorporeal therapy.

<span class="mw-page-title-main">Megaloblastic anemia</span> Medical condition

Megaloblastic anemia is a type of macrocytic anemia. An anemia is a red blood cell defect that can lead to an undersupply of oxygen. Megaloblastic anemia results from inhibition of DNA synthesis during red blood cell production. When DNA synthesis is impaired, the cell cycle cannot progress from the G2 growth stage to the mitosis (M) stage. This leads to continuing cell growth without division, which presents as macrocytosis. Megaloblastic anemia has a rather slow onset, especially when compared to that of other anemias. The defect in red cell DNA synthesis is most often due to hypovitaminosis, specifically vitamin B12 deficiency or folate deficiency. Loss of micronutrients may also be a cause.

Primary myelofibrosis (PMF) is a rare bone marrow blood cancer. It is classified by the World Health Organization (WHO) as a type of myeloproliferative neoplasm, a group of cancers in which there is activation and growth of mutated cells in the bone marrow. This is most often associated with a somatic mutation in the JAK2, CALR, or MPL genes. In PMF, the bony aspects of bone marrow are remodeled in a process called osteosclerosis; in addition, fibroblast secrete collagen and reticulin proteins that are collectively referred to as (fibrosis). These two pathological processes compromise the normal function of bone marrow resulting in decreased production of blood cells such as erythrocytes, granulocytes and megakaryocytes, the latter cells responsible for the production of platelets.

<span class="mw-page-title-main">Schistocyte</span> Fragmented portion of a red blood cell

A schistocyte or schizocyte is a fragmented part of a red blood cell. Schistocytes are typically irregularly shaped, jagged, and have two pointed ends.

<span class="mw-page-title-main">Febrile neutrophilic dermatosis</span> Medical condition

Sweet syndrome (SS), or acute febrile neutrophilic dermatosis, is a skin disease characterized by the sudden onset of fever, an elevated white blood cell count, and tender, red, well-demarcated papules and plaques that show dense infiltrates by neutrophil granulocytes on histologic examination.

Hemopoietic growth factors regulate the differentiation and proliferation of particular progenitor cells. Made available through recombinant DNA technology, they hold tremendous potential for medical uses when a person's natural ability to form blood cells is diminished or defective. Recombinant erythropoietin (EPO) is very effective in treating the diminished red blood cell production that accompanies end-stage kidney disease. Erythropoietin is a sialoglycoprotein hormone produced by peritubular cells of kidney.

Reticulocytopenia is the medical term for an abnormal decrease in circulating red blood cell precursors (reticulocytes) that can lead to anemia due to resulting low red blood cell (erythrocyte) production. Reticulocytopenia may be an isolated finding or it may not be associated with abnormalities in other hematopoietic cell lineages such as those that produce white blood cells (leukocytes) or platelets (thrombocytes), a decrease in all three of these lineages is referred to as pancytopenia.

Myelophthisic anemia is a severe type of anemia found in some people with diseases that affect the bone marrow. Myelophthisis refers to the displacement of hemopoietic bone-marrow tissue by fibrosis, tumors, or granulomas. The word comes from the roots myelo-, which refers to bone marrow, and phthisis, shrinkage or atrophy.

<span class="mw-page-title-main">Promyelocyte</span> Granulocyte precursor cell

A promyelocyte is a granulocyte precursor, developing from the myeloblast and developing into the myelocyte. Promyelocytes measure 12–20 microns in diameter. The nucleus of a promyelocyte is approximately the same size as a myeloblast but their cytoplasm is much more abundant. They also have less prominent nucleoli than myeloblasts and their chromatin is more coarse and clumped. The cytoplasm is basophilic and contains primary red/purple granules.

Hematologic diseases are disorders which primarily affect the blood and blood-forming organs. Hematologic diseases include rare genetic disorders, anemia, HIV, sickle cell disease and complications from chemotherapy or transfusions.

<span class="mw-page-title-main">White blood cell</span> Type of cells of the immunological system

White blood cells, also called immune cells or immunocytes, are cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. White blood cells are generally larger than red blood cells. They include three main subtypes: granulocytes, lymphocytes and monocytes.

References

  1. Maton, Anthea; Jean Hopkins; Charles William McLaughlin; Susan Johnson; Maryanna Quon Warner; David LaHart; Jill D. Wright (1993). Human Biology and Health . Englewood Cliffs, New Jersey, US: Prentice Hall. ISBN   0-13-981176-1.
  2. Boron, Walter F.; Boulpaep, Emile L. (2017). Medical Physiology (3rd ed.). Philadelphia: Elsevier. p. 434. ISBN   978-0-323-42796-8.
  3. Basic Biology (2015). "Blood cells".
  4. Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter (2002). Molecular Biology of the Cell (4th ed.). New York: Garland Science. ISBN   0-8153-4072-9.
  5. Kumar, Vinay; Abbas, Abul K.; Fausto, Nelson; Aster, Jon C. (2010). Robbins and Cotran Pathologic Basis of Disease (8th ed.). Philadelphia: Saunders/Elsevier. ISBN   978-1416031215.
  6. Ross DW, Ayscue LH, Watson J, Bentley SA (September 1988). "Stability of hematologic parameters in healthy subjects. Intraindividual versus interindividual variation". American Journal of Clinical Pathology. 90 (3): 262–7. doi:10.1093/ajcp/90.3.262. PMID   3414599.
  7. Hajdu, Steven I. (2003). "A Note from History: The Discovery of Blood Cells". Ann Clin Lab Sci. 33 (2): 237–8. PMID   12817630.