Hemocyte (invertebrate immune system cell)

Last updated

A hemocyte is a cell that plays a role in the immune system of invertebrates. It is found within the hemolymph. Hemocytes are phagocytes of invertebrates.

Hemocytes in Drosophila melanogaster can be divided into two categories: embryonic and larval. Embryonic hemocytes are derived from head mesoderm and enter the hemolymph as circulating cells. Larval hemocytes, on the other hand, are responsible for tissue remodeling during development. Specifically, they are released during the pupa stage in order to prepare the fly for the transition into an adult and the massive associated tissue reorganization that must occur.

There are four basic types of hemocytes found in fruit flies: secretory, plasmatocytes, crystal cells, and lamellocytes. Secretory cells are never released into the hemolymph and instead send out signalling molecules responsible for cell differentiation. Plasmatocytes are the hemocytes responsible for cell ingestion (phagocytosis) and represent about 95% of circulating hemocytes. Crystal cells are only found in the larval stage of Drosophila, and they are involved in melanization, a process by which microbes/pathogens are engulfed in a hardened gel and destroyed via anti-microbial peptides and other proteins involved in the humoral response. They constitute about 5% of circulating hemocytes. Lamellocytes are flat cells that are never found in adult cells, and instead are only present in larval cells for their ability to encapsulate invading pathogens. They specifically act on parasitic wasp eggs that bind to the surfaces of cells, and are incapable of being phagocytosed by host cells. [1]

In mosquitoes, hemocytes are functionally divided into three populations: granulocytes, oenocytoids and prohemocytes. [2] Granulocytes are the most abundant cell type. They rapidly attach to foreign surfaces and readily engage in phagocytosis. Oenocytoids do not readily spread on foreign surfaces and are the major producers of phenoloxidase, which is the major enzyme of the melanization immune pathway.  Prohemocytes are small cells of unknown function, which may result from the asymmetric mitosis of granulocytes.

Related Research Articles

<i>Drosophila melanogaster</i> Species of fruit fly

Drosophila melanogaster is a species of fly in the family Drosophilidae. The species is often referred to as the fruit fly or lesser fruit fly, or less commonly the "vinegar fly" or "pomace fly". Starting with Charles W. Woodworth's proposal of the use of this species as a model organism, D. melanogaster continues to be widely used for biological research in genetics, physiology, microbial pathogenesis, and life history evolution. As of 2017, five Nobel Prizes have been awarded to drosophilists for their work using the animal.

Hemolymph Body fluid that circulates in the interior of an arthropod body

Hemolymph, or haemolymph, is a fluid, analogous to the blood in vertebrates, that circulates in the interior of the arthropod (invertebrate) body, remaining in direct contact with the animal's tissues. It is composed of a fluid plasma in which hemolymph cells called hemocytes are suspended. In addition to hemocytes, the plasma also contains many chemicals. It is the major tissue type of the open circulatory system characteristic of arthropods. In addition, some non-arthropods such as molluscs possess a hemolymphatic circulatory system.

Phagocytosis Process by which a cell uses its plasma membrane to engulf a large particle

Phagocytosis is the process by which a cell uses its plasma membrane to engulf a large particle, giving rise to an internal compartment called the phagosome. It is one type of endocytosis. A cell that performs phagocytosis is called a phagocyte.

Immunoglobulin A Antibody that plays a crucial role in the immune function of mucous membranes

Immunoglobulin A is an antibody that plays a crucial role in the immune function of mucous membranes. The amount of IgA produced in association with mucosal membranes is greater than all other types of antibody combined. In absolute terms, between three and five grams are secreted into the intestinal lumen each day. This represents up to 15% of total immunoglobulins produced throughout the body.

Granulocyte category of white blood cells

Granulocytes are cells in the innate immune system characterized by the presence of specific granules in their cytoplasm. They are also called polymorphonuclear leukocytes because of the varying shape of the nucleus, which is usually lobed into three segments. This distinguishes them from the mononuclear agranulocytes. The term polymorphonuclear leukocyte often refers specifically to "neutrophil granulocytes", the most abundant of the granulocytes; the other types have fewer lobes. Granulocytes are produced via granulopoiesis in the bone marrow.

Opsonins are extracellular proteins that, when bound to substances or cells, induce phagocytes to phagocytose the substances or cells with the opsonins bound. Thus, opsonins act as tags to label things in the body that should be phagocytosed by phagocytes. Different types of things ("targets") can be tagged by opsonins for phagocytosis, including: pathogens, cancer cells, aged cells, dead or dying cells, excess synapses, or protein aggregates. Opsonins helps clear pathogens, as well as dead, dying and diseased cells.

DSCAM

DSCAM and Dscam are both abbreviations for Down syndrome cell adhesion molecule. In humans, DSCAM refers to a gene that encodes one of several protein isoforms.

Polydnavirus Family of viruses

A polydnavirus (PDV) is a member of the family Polydnaviridae of insect viruses. There are two genera in the family: Bracovirus and Ichnovirus. Polydnaviruses form a symbiotic relationship with parasitoid wasps, but these wasps are themselves parasitic on Lepidoptera. Little or no sequence homology exists between BV and IV, suggesting that the two genera have been evolving independently for a long time.

Phagosome

In cell biology, a phagosome is a vesicle formed around a particle engulfed by a phagocyte via phagocytosis. Professional phagocytes include macrophages, neutrophils, and dendritic cells (DCs).

Innate immune system One of the two main immunity strategies

The innate, or nonspecific, immune system is one of the two main immunity strategies in vertebrates. The innate immune system is an older evolutionary defense strategy, relatively speaking, and is the dominant immune system response found in plants, fungi, insects, and primitive multicellular organisms.

Imaginal disc One of the parts of a holometabolous insect larva

An imaginal disc is one of the parts of a holometabolous insect larva that will become a portion of the outside of the adult insect during the pupal transformation. Contained within the body of the larva, there are pairs of discs that will form, for instance, the wings or legs or antennae or other structures in the adult. The role of the imaginal disc in insect development was first elucidated by Jan Swammerdam.

Animal testing on invertebrates

Most animal testing involves invertebrates, especially Drosophila melanogaster, a fruit fly, and Caenorhabditis elegans, a nematode. These animals offer scientists many advantages over vertebrates, including their short life cycle, simple anatomy and the ease with which large numbers of individuals may be studied. Invertebrates are often cost-effective, as thousands of flies or nematodes can be housed in a single room.

Bursicon is an insect hormone which mediates tanning in the cuticle of adult flies.

Priming is the first contact that antigen-specific T helper cell precursors have with an antigen. It is essential to the T helper cells' subsequent interaction with B cells to produce antibodies. Priming of antigen-specific naive lymphocytes occurs when antigen is presented to them in immunogenic form. Subsequently, the primed cells will differentiate either into effector cells or into memory cells that can mount stronger and faster response to second and upcoming immune challenges.

Halloween genes set of genes that influence embryonic development

The halloween genes are a set of genes identified in Drosophila melanogaster that influence embryonic development. All of the genes code for cytochrome P450 enzymes in the ecdysteroidogenic pathway (biosynthesis of ecdysone from cholesterol). Ecdysteroids such as 20-hydroxyecdysone and ecdysone influence many of the morphological, physiological, biochemical changes that occur during molting in insects.

Dally is the name of a gene that encodes a HS-modified-protein found in the fruit fly. The protein has to be processed after being codified, and in its mature form it is composed by 626 amino acids, forming a proteoglycan rich in heparin sulfate which is anchored to the cell surface via covalent linkage to glycophosphatidylinositol (GPI), so we can define it as a glypican. For its normal biosynthesis it requires sugarless (sgl), a gene that encodes an enzyme which plays a critical role in the process of modification of dally.

Thioester containing protein 1, often called TEP1 is a key component of the arthropod innate immune system. TEP1 was first identified as a key immunity gene in 2001 through functional studies on Anopheles gambiae mosquitoes.

Spiroplasma poulsonii are bacteria of the genus Spiroplasma that are commonly endosymbionts of flies. These bacteria live in the hemolymph of the flies, where they can act as reproductive manipulators or defensive symbionts.

<i>Drosophila quinaria</i> species group Species group of the subgenus Drosophila

The Drosophila quinaria species group is a speciose lineage of mushroom-feeding flies studied for their specialist ecology, their parasites, population genetics, and the evolution of immune systems. Quinaria species are part of the Drosophila subgenus.

Phenoloxidase system is a major defense system in many invertebrates which ultimately leads to melanization of pathogens and damaged tissues. The process of melanization depends on activation of the enzyme phenoloxidase (PO) which is controlled by the prophenoloxidase (proPO) activation system.

References

  1. Schlenke TA, Morales J, Govind S, Clark AG (October 2007). "Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster". PLoS Pathogens. 3 (10): 1486–501. doi:10.1371/journal.ppat.0030158. PMC   2042021 . PMID   17967061.
  2. Hillyer JF, Strand MR (September 2014). "Mosquito hemocyte-mediated immune responses". Current Opinion in Insect Science. Vectors and medical and veterinary entomology. 3: 14–21. doi:10.1016/j.cois.2014.07.002. PMC   4190037 . PMID   25309850.