Tumor marker

Last updated

A tumor marker is a biomarker that can be used to indicate the presence of cancer or the behavior of cancers (measure progression or response to therapy). They can be found in bodily fluids or tissue. Markers can help with assessing prognosis, surveilling patients after surgical removal of tumors, and even predicting drug-response and monitor therapy. [1]

Contents

Tumor markers can be molecules that are produced in higher amounts by cancer cells than normal cells, but can also be produced by other cells from a reaction with the cancer. [2]

The markers can't be used to give patients a diagnosis but can be compared with the result of other tests like biopsy or imaging. [2]

Classification

Tumor markers can be proteins, carbohydrates, receptors and gene products. Proteins include hormones and enzymes. To detect enzyme tumor markers enzyme activity is measured. They were previously widely used, but they have largely been replaced by oncofetal antigens and monoclonal antibodies, due to disadvantages such as most of them lacking organ specificity. Carbohydrates consists of antigens on and/or secreted from tumor cells, these are either high-molecular weight mucins or blood group antigens. Receptors are used to determine prognosis and measure how the patient responds to treatment, while genes or gene product can be analyzed to identify mutations in the genome or altered gene expression. [3]

Uses

Tumor markers may be used for the following purposes:

When a malignant tumor is found by the presence of a tumor marker, the level of marker found in the body can be monitored to determine the state of the tumor and how it responds to treatment. If the quantity stays the same during treatment it can indicate that the treatment isn't working, and an alternative treatment should be considered. Rising levels of tumor marker does not necessarily reflect a growing malignancy but can result from things like unrelated illnesses.

By determining the stage of cancer, it's possible to give a prognosis and treatment plan. [4]

No screening test is wholly specific, and a high level of tumor marker can still be found in benign tumors. The only tumor marker currently used in screening is PSA (prostate-specific antigen).

Tumor markers alone can't be used for diagnostic purposes, due to lack of sensitivity and specificity. [5] The only approved diagnostic method for cancer is with a biopsy.

Tumor markers can detect reoccurring cancers in patients post-treatment. [4]

Techniques

Tumor markers can be determined in serum or rarely in urine or other body fluids, often by immunoassay, ⁣⁣ but other techniques such as enzyme activity determination are sometimes used. Assaying tumor markers were significantly improved after the creation of ELISA and RIA techniques and the advancement of monoclonal antibodies in the 1960s and 1970s. [2]

For many assays, different assay techniques are available. It is important that the same assay is used, as the results from different assays are generally not comparable. For example, mutations of the p53 gene can be detected through immunohistochemical polymorphism screening of DNA, sequence analysis of DNA, or by single-strand conformational polymorphism screening of DNA. Each assay may give different results of the clinical value of the p53 mutations as a prognostic factor. [6]

Interlaboratory proficiency testing for tumor marker tests, and for clinical tests more generally, is routine in Europe and an emerging field [7] in the United States. New York state is prominent in advocating such research. [8]

List of commonly used markers

Tumor markerAssociated tumor types
Alpha fetoprotein (AFP) germ cell tumor, hepatocellular carcinoma [9]
CA15-3 breast cancer [10]
CA27.29 breast cancer [11]
CA19-9 Mainly pancreatic cancer, but also colorectal cancer and other types of gastrointestinal cancer. [12]
CA-125 Mainly ovarian cancer, [13] but may also be elevated in for example endometrial cancer, fallopian tube cancer, lung cancer, breast cancer and gastrointestinal cancer. [14]
Calcitonin medullary thyroid carcinoma [15]
Calretinin mesothelioma, sex cord-gonadal stromal tumor, adrenocortical carcinoma, synovial sarcoma [9]
Carcinoembryonic antigen (CEA) gastrointestinal cancer, cervix cancer, lung cancer, ovarian cancer, breast cancer, urinary tract cancer [9]
CD34 hemangiopericytoma/solitary fibrous tumor, pleomorphic lipoma, gastrointestinal stromal tumor, dermatofibrosarcoma protuberans [9]
CD99 Ewing sarcoma, primitive neuroectodermal tumor, hemangiopericytoma/solitary fibrous tumor, synovial sarcoma, lymphoma, leukemia, sex cord-gonadal stromal tumor [9]
CD117 gastrointestinal stromal tumor, mastocytosis, seminoma [9]
Chromogranin neuroendocrine tumor [9]
Chromosomes 3, 7, 17, and 9p21 bladder cancer [16]
Cytokeratin Many types of carcinoma, some types of sarcoma [9]
Desmin smooth muscle sarcoma, skeletal muscle sarcoma, endometrial stromal sarcoma [9]
Epithelial membrane antigen (EMA)many types of carcinoma, meningioma, some types of sarcoma [9]
Factor VIII; CD31, FL1, CD34 vascular sarcoma [9]
Glial fibrillary acidic protein (GFAP) glioma (astrocytoma, ependymoma) [9]
Gross cystic disease fluid protein (GCDFP-15) breast cancer, ovarian cancer, salivary gland cancer [9]
HMB-45 melanoma, PEComa (for example angiomyolipoma), clear cell carcinoma, adrenocortical carcinoma [9]
Human chorionic gonadotropin (hCG) gestational trophoblastic disease, germ cell tumor, choriocarcinoma [9]
immunoglobulin lymphoma, leukemia [9]
inhibin sex cord-gonadal stromal tumor, adrenocortical carcinoma, hemangioblastoma [9]
keratin (various types) carcinoma, some types of sarcoma [9]
lymphocyte marker (various types) lymphoma, leukemia [9]
MART-1 (Melan-A) melanoma, steroid-producing tumors (adrenocortical carcinoma, gonadal tumor) [9]
Myo D1 rhabdomyosarcoma, small-blue-round-cell tumor [9]
muscle-specific actin (MSA) myosarcoma (leiomyosarcoma, rhabdomyosarcoma) [9]
neurofilament neuroendocrine tumor; small-cell carcinoma of the lung [9]
neuron-specific enolase (NSE) neuroendocrine tumor; small-cell carcinoma of the lung, breast cancer [9]
placental alkaline phosphatase (PLAP) seminoma, dysgerminoma, embryonal carcinoma [9]
prostate-specific antigen (PSA) prostate [9]
S100 protein melanoma, sarcoma (neurosarcoma, lipoma, chondrosarcoma), astrocytoma, gastrointestinal stromal tumor, salivary gland cancer, some types of adenocarcinoma, histiocytic tumor (dendritic cell, macrophage) [9]
smooth muscle actin (SMA) gastrointestinal stromal tumor, leiomyosarcoma, PEComa [9]
synaptophysin neuroendocrine tumor [9]
thymidine kinase lymphoma, leukemia, lung cancer, prostate cancer [17]
thyroglobulin (Tg)post-operative marker of thyroid cancer (but not in medullary thyroid cancer) [9]
thyroid transcription factor-1 (TTF-1)all types of thyroid cancer, lung cancer [9]
Tumor M2-PK colorectal cancer, [18] Breast cancer, [19] [20] renal cell carcinoma [21] lung cancer, [22] [23] pancreatic cancer, [24] esophageal cancer, [25] stomach cancer, [25] cervical cancer, [26] ovarian cancer, [27]
vimentin sarcoma, renal cell carcinoma, endometrial cancer, lung carcinoma, lymphoma, leukemia, melanoma [9]

Accuracy and specific use

The ideal tumor marker has the following characteristics:

An ideal tumor marker does not exist, and how they are clinically applied depends on the specific tumor marker. For example, tumor markers like Ki-67 can be used to choose form of treatment or in prognostics but are not useful to give a diagnosis, while other tumor markers have the opposite functionality. Therefore it's important to follow the guidelines of the specific tumor marker.  

Tumor markers are mainly used in clinical medicine to support a diagnosis and monitor the state of malignancy or reocurrence of cancer. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Biopsy</span> Medical test involving extraction of sample cells or tissues for examination

A biopsy is a medical test commonly performed by a surgeon, an interventional radiologist, or an interventional cardiologist. The process involves the extraction of sample cells or tissues for examination to determine the presence or extent of a disease. The tissue is then fixed, dehydrated, embedded, sectioned, stained and mounted before it is generally examined under a microscope by a pathologist; it may also be analyzed chemically. When an entire lump or suspicious area is removed, the procedure is called an excisional biopsy. An incisional biopsy or core biopsy samples a portion of the abnormal tissue without attempting to remove the entire lesion or tumor. When a sample of tissue or fluid is removed with a needle in such a way that cells are removed without preserving the histological architecture of the tissue cells, the procedure is called a needle aspiration biopsy. Biopsies are most commonly performed for insight into possible cancerous or inflammatory conditions.

<span class="mw-page-title-main">Chronic lymphocytic leukemia</span> Bone marrow cancer in which lymphocytes are overproduced

Chronic lymphocytic leukemia (CLL) is a type of cancer that affects the blood and bone marrow. In CLL, the bone marrow makes too many lymphocytes, which are a type of white blood cell. In patients with CLL, B cell lymphocytes can begin to collect in their blood, spleen, lymph nodes, and bone marrow. These cells do not function well and crowd out healthy blood cells. CLL is divided into two main types:

  1. Slow-growing CLL
  2. Fast-growing CLL
<span class="mw-page-title-main">Malignancy</span> Tendency of a medical condition to become progressively worse

Malignancy is the tendency of a medical condition to become progressively worse; the term is most familiar as a characterization of cancer.

<span class="mw-page-title-main">Carcinoembryonic antigen</span> Glycoprotein secreted into the luminal surface of the epithelia in the gastrointestinal tract

Carcinoembryonic antigen (CEA) describes a set of highly-related glycoproteins involved in cell adhesion. CEA is normally produced in gastrointestinal tissue during fetal development, but the production stops before birth. Consequently, CEA is usually present at very low levels in the blood of healthy adults. However, the serum levels are raised in some types of cancer, which means that it can be used as a tumor marker in clinical tests. Serum levels can also be elevated in heavy smokers.

In oncology, the Warburg effect is the observation that most cancers use aerobic glycolysis and lactic acid fermentation for energy generation rather than the mechanisms used by non-cancerous cells. This observation was first published by Otto Heinrich Warburg, who was awarded the 1931 Nobel Prize in Physiology for his "discovery of the nature and mode of action of the respiratory enzyme". The existence of the Warburg effect has fuelled popular misconceptions that cancer can be treated by dietary reductions in sugar and carbohydrate.

In medicine, a biomarker is a measurable indicator of the severity or presence of some disease state. It may be defined as a "cellular, biochemical or molecular alteration in cells, tissues or fluids that can be measured and evaluated to indicate normal biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention." More generally a biomarker is anything that can be used as an indicator of a particular disease state or some other physiological state of an organism. According to the WHO, the indicator may be chemical, physical, or biological in nature - and the measurement may be functional, physiological, biochemical, cellular, or molecular.

Tumor M2-PK is a synonym for the dimeric form of the pyruvate kinase isoenzyme type M2 (PKM2), a key enzyme within tumor metabolism. Tumor M2-PK can be elevated in many tumor types, rather than being an organ-specific tumor marker such as PSA. Increased stool (fecal) levels are being investigated as a method of screening for colorectal tumors, and EDTA plasma levels are undergoing testing for possible application in the follow-up of various cancers.

<span class="mw-page-title-main">Mesothelin</span> Protein found in humans

Mesothelin, also known as MSLN, is a protein that in humans is encoded by the MSLN gene.

A paraneoplastic syndrome is a syndrome that is the consequence of a tumor in the body. It is specifically due to the production of chemical signaling molecules by tumor cells or by an immune response against the tumor. Unlike a mass effect, it is not due to the local presence of cancer cells.

<span class="mw-page-title-main">Medullary thyroid cancer</span> Malignant thyroid neoplasm originating from C-cells

Medullary thyroid cancer is a form of thyroid carcinoma which originates from the parafollicular cells, which produce the hormone calcitonin. Medullary tumors are the third most common of all thyroid cancers and together make up about 3% of all thyroid cancer cases. MTC was first characterized in 1959.

<span class="mw-page-title-main">Zinc transporter SLC39A7</span> Protein found in humans

Zinc transporter SLC39A7 (ZIP7), also known as solute carrier family 39 member 7, is a transmembrane protein that in humans is encoded by the SLC39A7 gene. It belongs to the ZIP family, which consists of 14 proteins that transport zinc into the cytoplasm. Its primary role is to control the transport of zinc from the ER and Golgi apparatus to the cytoplasm. It also plays a role in glucose metabolism. Its structure consists of helices that bind to zinc in a binuclear metal center. Its fruit fly orthologue is Catsup.

Tumor-associated glycoprotein 72 (TAG-72) is a glycoprotein found on the surface of many cancer cells, including ovary, breast, colon, lung, and pancreatic cancers. It is a mucin-like molecule with a molar mass of over 1000 kDa.

<span class="mw-page-title-main">Epithelioid sarcoma</span> Medical condition

Epithelioid sarcoma is a rare soft tissue sarcoma arising from mesenchymal tissue and characterized by epithelioid-like features. It accounts for less than 1% of all soft tissue sarcomas. It was first definitively characterized by F.M. Enzinger in 1970. It commonly presents itself in the distal limbs of young adults as a small, soft mass or a cluster of bumps. A proximal version has also been described, frequently occurring in the upper extremities. Less commonly, cases are reported in the pelvis, vulva, penis, and spine.

Proliferation, as one of the hallmarks and most fundamental biological processes in tumors, is associated with tumor progression, response to therapy, and cancer patient survival. Consequently, the evaluation of a tumor proliferative index has clinical significance in characterizing many solid tumors and hematologic malignancies. This has led investigators to develop different technologies to evaluate the proliferation index in tumor samples. The most commonly used methods in evaluating a proliferative index include mitotic indexing, thymidine-labeling index, bromodeoxyuridine assay, the determination of fraction of cells in various phases of cell cycle, and the immunohistochemical evaluation of cell cycle-associated proteins.

<span class="mw-page-title-main">Circulating tumor cell</span> Cell from a primary tumor carried by blood circulation

A circulating tumor cell (CTC) is a cancer cell from a primary tumor that has shed into the blood of the circulatory system, or the lymph of the lymphatic system. CTCs are carried around the body to other organs where they may leave the circulation and become the seeds for the subsequent growth of secondary tumors. This is known as metastasis, responsible for most cancer-related deaths.

<span class="mw-page-title-main">PCA3</span> Non-coding RNA in the species Homo sapiens

Prostate cancer antigen 3 is a gene that expresses a non-coding RNA. PCA3 is only expressed in human prostate tissue, and the gene is highly overexpressed in prostate cancer. Because of its restricted expression profile, the PCA3 RNA is useful as a tumor marker.

<span class="mw-page-title-main">Oncology</span> Branch of medicine dealing with, or specializing in, cancer

Oncology is a branch of medicine that deals with the study, treatment, diagnosis, and prevention of cancer. A medical professional who practices oncology is an oncologist. The name's etymological origin is the Greek word ὄγκος (ónkos), meaning "tumor", "volume" or "mass". Oncology is concerned with:

<span class="mw-page-title-main">Cancer biomarker</span> Substance or process that is indicative of the presence of cancer in the body

A cancer biomarker refers to a substance or process that is indicative of the presence of cancer in the body. A biomarker may be a molecule secreted by a tumor or a specific response of the body to the presence of cancer. Genetic, epigenetic, proteomic, glycomic, and imaging biomarkers can be used for cancer diagnosis, prognosis, and epidemiology. Ideally, such biomarkers can be assayed in non-invasively collected biofluids like blood or serum.

<span class="mw-page-title-main">Tumor microenvironment</span> Surroundings of tumors including nearby cells and blood vessels

The tumor microenvironment is a complex ecosystem surrounding a tumor, composed of cancer cells, stromal tissue and the extracellular matrix. Mutual interaction between cancer cells and the different components of the tumor microenvironment support its growth and invasion in healthy tissues which correlates with tumor resistance to current treatments and poor prognosis. The tumor microenvironment is in constant change because of the tumor's ability to influence the microenvironment by releasing extracellular signals, promoting tumor angiogenesis and inducing peripheral immune tolerance, while the immune cells in the microenvironment can affect the growth and evolution of cancerous cells.

Thymidine kinase is an enzyme, a phosphotransferase : 2'-deoxythymidine kinase, ATP-thymidine 5'-phosphotransferase, EC 2.7.1.21 that catalyzes the reaction:

References

  1. Faria, S. C.; Sagebiel, T.; Patnana, M.; Cox, V.; Viswanathan, C.; Lall, C.; Qayyum, A.; Bhosale, P. R. (2019-04-01). "Tumor markers: myths and facts unfolded". Abdominal Radiology. 44 (4): 1575–1600. doi:10.1007/s00261-018-1845-0. ISSN   2366-0058. PMID   30498924. S2CID   54046548.
  2. 1 2 3 Sokoll, Lori J.; Chan, Daniel W. (2020-01-01), "Tumor markers", Contemporary Practice in Clinical Chemistry, Academic Press, pp. 779–793, doi:10.1016/B978-0-12-815499-1.00044-2, ISBN   978-0-12-815499-1, S2CID   263459844 , retrieved 2024-02-15
  3. "ScienceDirect.com | Science, health and medical journals, full text articles and books". www.sciencedirect.com. Retrieved 2024-02-15.
  4. 1 2 Nagpal, Madhav; Singh, Shreya; Singh, Pranshu; Chauhan, Pallavi; Zaidi, Meesam Abbas (2016). "Tumor markers: A diagnostic tool". National Journal of Maxillofacial Surgery. 7 (1): 17–20. doi: 10.4103/0975-5950.196135 . ISSN   0975-5950. PMC   5242068 . PMID   28163473.
  5. 1 2 Sharma, S. (2009). "Tumor markers in clinical practice: General principles and guidelines". Indian Journal of Medical and Paediatric Oncology. 30 (1): 1–8. doi: 10.4103/0971-5851.56328 . ISSN   0971-5851. PMC   2902207 . PMID   20668599.
  6. Hayes, D. F.; Bast, R. C.; Desch, C. E.; Fritsche, H.; Kemeny, N. E.; Jessup, J. M.; Locker, G. Y.; Macdonald, J. S.; Mennel, R. G.; Norton, L.; Ravdin, P.; Taube, S.; Winn, R. J. (1996-10-16). "Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers". Journal of the National Cancer Institute. 88 (20): 1456–1466. doi:10.1093/jnci/88.20.1456. ISSN   0027-8874. PMID   8841020.
  7. Koepke, John A. (1992). "Molecular marker test standardization". Cancer. 69 (6 Suppl): 1578–81. doi: 10.1002/1097-0142(19920315)69:6+<1578::AID-CNCR2820691312>3.0.CO;2-K . PMID   1540898. S2CID   9157824.
  8. Promoting Safe and Effective Genetic Testing in the United States genome.gov
  9. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Page 746 in: Title Manual of clinical oncology Spiral manual Manual of Clinical Oncology Lippincott Manual Series Authors Dennis Albert Casciato, Mary C. Territo Editors Dennis Albert Casciato, Mary C. Territo Contributor Mary C. Territo Edition 6, illustrated Publisher Lippincott Williams & Wilkins, 2008 ISBN   0-7817-6884-5, ISBN   978-0-7817-6884-9
  10. Keshaviah, A; Dellapasqua, S; Rotmensz, N; Lindtner, J; Crivellari, D; Collins, J; Colleoni, M; Thurlimann, B; et al. (2006). "CA15-3 and alkaline phosphatase as predictors for breast cancer recurrence: A combined analysis of seven International Breast Cancer Study Group trials". Annals of Oncology. 18 (4): 701–8. doi: 10.1093/annonc/mdl492 . PMID   17237474.
  11. Gion, M.; Mione, R.; Leon, A. E.; Lüftner, D.; Molina, R.; Possinger, K.; Robertson, J. F. (February 2001). "CA27.29: a valuable marker for breast cancer management. A confirmatory multicentric study on 603 cases". European Journal of Cancer. 37 (3): 355–363. doi:10.1016/s0959-8049(00)00396-8. ISSN   0959-8049. PMID   11239757.
  12. Lee, Tsinrong; Teng, Thomas Zheng Jie; Shelat, Vishal G (2020-12-27). "Carbohydrate antigen 19-9 — tumor marker: Past, present, and future". World Journal of Gastrointestinal Surgery. 12 (12): 468–490. doi: 10.4240/wjgs.v12.i12.468 . ISSN   1948-9366. PMC   7769746 . PMID   33437400.
  13. Osman N, O'Leary N, Mulcahy E, Barrett N, Wallis F, Hickey K, Gupta R (September 2008). "Correlation of serum CA125 with stage, grade and survival of patients with epithelial ovarian cancer at a single centre". Ir Med J. 101 (8): 245–7. PMID   18990955.
  14. Bast RC, Xu FJ, Yu YH, Barnhill S, Zhang Z, Mills GB (1998). "CA 125: the past and the future". Int. J. Biol. Markers. 13 (4): 179–87. doi:10.1177/172460089801300402. PMID   10228898. S2CID   46589946.
  15. Kudo, Takumi; Miyauchi, Akira; Ito, Yasuhiro; Yabuta, Tomonori; Inoue, Hiroyuki; Higashiyama, Takuya; Tomoda, Chisato; Hirokawa, Mitsuhide; Amino, Nobuyuki (2011). "Serum calcitonin levels with calcium loading tests before and after total thyroidectomy in patients with thyroid diseases other than medullary thyroid carcinoma". Endocrine Journal. 58 (3): 217–221. doi:10.1507/endocrj.k10e-359. ISSN   1348-4540. PMID   21358115.
  16. KE, ZUNFU; LAI, YUANHUA; MA, XUDONG; LIL, SHUHUA; HUANG, WENHUA (February 2014). "Diagnosis of bladder cancer from the voided urine specimens using multi-target fluorescence in situ hybridization". Oncology Letters. 7 (2): 325–330. doi:10.3892/ol.2013.1744. ISSN   1792-1074. PMC   3881196 . PMID   24396440.
  17. Hallek, M.; Wanders, L.; Strohmeyer, S.; Emmerich, B. (July 1992). "Thymidine kinase: a tumor marker with prognostic value for non-Hodgkin's lymphoma and a broad range of potential clinical applications". Annals of Hematology. 65 (1): 1–5. doi:10.1007/BF01715117. ISSN   0939-5555. PMID   1643153. S2CID   2748430.
  18. Haug, U; Rothenbacher, D; Wente, M N; Seiler, C M; Stegmaier, C; Brenner, H (2007). "Tumour M2-PK as a stool marker for colorectal cancer: Comparative analysis in a large sample of unselected older adults vs colorectal cancer patients". British Journal of Cancer. 96 (9): 1329–34. doi:10.1038/sj.bjc.6603712. PMC   2360192 . PMID   17406361.
  19. Lüftner, D; Mesterharm, J; Akrivakis, C; Geppert, R; Petrides, PE; Wernecke, KD; Possinger, K (2000). "Tumor type M2 pyruvate kinase expression in advanced breast cancer". Anticancer Research. 20 (6D): 5077–82. PMID   11326672.
  20. Benesch, C; Schneider, C; Voelker, HU; Kapp, M; Caffier, H; Krockenberger, M; Dietl, J; Kammerer, U; Schmidt, M (2010). "The clinicopathological and prognostic relevance of pyruvate kinase M2 and pAkt expression in breast cancer". Anticancer Research. 30 (5): 1689–94. PMID   20592362.
  21. Wechsel, HW; Petri, E; Bichler, KH; Feil, G (1999). "Marker for renal cell carcinoma (RCC): The dimeric form of pyruvate kinase type M2 (Tu M2-PK)". Anticancer Research. 19 (4A): 2583–90. PMID   10470199.
  22. Schneider, J; Peltri, G; Bitterlich, N; Philipp, M; Velcovsky, HG; Morr, H; Katz, N; Eigenbrodt, E (2003). "Fuzzy logic-based tumor marker profiles improved sensitivity of the detection of progression in small-cell lung cancer patients". Clinical and Experimental Medicine. 2 (4): 185–91. doi:10.1007/s102380300005. PMID   12624710. S2CID   11010291.
  23. Oremek, G; Kukshaĭte, R; Sapoutzis, N; Ziolkovski, P (2007). "The significance of TU M2-PK tumor marker for lung cancer diagnostics". Klinicheskaia Meditsina. 85 (7): 56–8. PMID   17882813.
  24. Hardt, PD; Ngoumou, BK; Rupp, J; Schnell-Kretschmer, H; Kloer, HU (2000). "Tumor M2-pyruvate kinase: A promising tumor marker in the diagnosis of gastro-intestinal cancer". Anticancer Research. 20 (6D): 4965–8. PMID   11326648.
  25. 1 2 Kumar, Yogesh; Tapuria, Niteen; Kirmani, Naveed; Davidson, Brian R. (2007). "Tumour M2-pyruvate kinase: A gastrointestinal cancer marker". European Journal of Gastroenterology & Hepatology. 19 (3): 265–276. doi:10.1097/MEG.0b013e3280102f78. PMID   17301655. S2CID   2131366.
  26. Kaura, B; Bagga, R; Patel, FD (2004). "Evaluation of the Pyruvate Kinase isoenzyme tumor (Tu M2-PK) as a tumor marker for cervical carcinoma". The Journal of Obstetrics and Gynaecology Research. 30 (3): 193–6. doi:10.1111/j.1447-0756.2004.00187.x. PMID   15210041. S2CID   31214841.
  27. Ahmed, AS; Dew, T; Lawton, FG; Papadopoulos, AJ; Devaja, O; Raju, KS; Sherwood, RA (2007). "M2-PK as a novel marker in ovarian cancer. A prospective cohort study". European Journal of Gynaecological Oncology. 28 (2): 83–8. PMID   17479666.

Further reading