Glycated hemoglobin

Last updated
Glycated hemoglobin
MedlinePlus 003640
eMedicine 2049478
LOINC 41995-2

Glycated hemoglobin, also called glycohemoglobin, is a form of hemoglobin (Hb) that is chemically linked to a sugar. [note 1] Most monosaccharides, including glucose, galactose, and fructose, spontaneously (that is, non-enzymatically) bond with hemoglobin when they are present in the bloodstream. However, glucose is only 21% as likely to do so as galactose and 13% as likely to do so as fructose, which may explain why glucose is used as the primary metabolic fuel in humans. [1] [2]

Contents

The formation of excess sugar-hemoglobin linkages indicates the presence of excessive sugar in the bloodstream and is an indicator of diabetes or other hormone diseases in high concentration (HbA1c > 6.4%). [3] A1c is of particular interest because it is easy to detect. The process by which sugars attach to hemoglobin is called glycation and the reference system is based on HbA1c, defined as beta-N-1-deoxy fructosyl hemoglobin as component. [4]

There are several ways to measure glycated hemoglobin, of which HbA1c (or simply A1c) is a standard single test. [5] HbA1c is measured primarily to determine the three-month average blood sugar level and is used as a standard diagnostic test for evaluating the risk of complications of diabetes and as an assessment of glycemic control. [5] [6] The test is considered a three-month average because the average lifespan of a red blood cell is three to four months. Normal levels of glucose produce a normal amount of glycated hemoglobin. As the average amount of plasma glucose increases, the fraction of glycated hemoglobin increases in a predictable way. In diabetes, higher amounts of glycated hemoglobin, indicating higher of blood glucose levels, have been associated with cardiovascular disease, nephropathy, neuropathy, and retinopathy. [7]

Terminology

Glycated hemoglobin is preferred over glycosylated hemoglobin to reflect the correct (non-enzymatic) process. Early literature often used glycosylated as it was unclear which process was involved until further research was performed. The terms are still sometimes used interchangeably in English-language literature. [8]

The naming of HbA1c derives from hemoglobin type A being separated on cation exchange chromatography. The first fraction to separate, probably considered to be pure hemoglobin A, was designated HbA0, and the following fractions were designated HbA1a, HbA1b, and HbA1c, in their order of elution. Improved separation techniques have subsequently led to the isolation of more subfractions. [9]

History

Hemoglobin A1c was first separated from other forms of hemoglobin by Huisman and Meyering in 1958 using a chromatographic column. [10] It was first characterized as a glycoprotein by Bookchin and Gallop in 1968. [11] Its increase in diabetes was first described in 1969 by Samuel Rahbar et al. [12] The reactions leading to its formation were characterized by Bunn and his coworkers in 1975. [13]

The use of hemoglobin A1c for monitoring the degree of control of glucose metabolism in diabetic patients was proposed in 1976 by Anthony Cerami, Ronald Koenig, and coworkers. [14]

Damage mechanisms

Glycated hemoglobin causes an increase of highly reactive free radicals inside blood cells, altering the properties of their cell membranes. This leads to blood cell aggregation and increased blood viscosity, which results in impaired blood flow. [15]

Another way glycated hemoglobin causes damage is via inflammation, which results in atherosclerotic plaque (atheroma) formation. Free-radical build-up promotes the excitation of Fe2+-hemoglobin through Fe3+-Hb into abnormal ferryl hemoglobin (Fe4+-Hb). Fe4+ is unstable and reacts with specific amino acids in hemoglobin to regain its Fe3+ oxidation state. Hemoglobin molecules clump together via cross-linking reactions, and these hemoglobin clumps (multimers) promote cell damage and the release of Fe4+-hemoglobin into the matrix of innermost layers (subendothelium) of arteries and veins. This results in increased permeability of interior surface (endothelium) of blood vessels and production of pro-inflammatory monocyte adhesion proteins, which promote macrophage accumulation in blood vessel surfaces, ultimately leading to harmful plaques in these vessels. [15]

Highly glycated Hb-AGEs go through vascular smooth muscle layer and inactivate acetylcholine-induced endothelium-dependent relaxation, possibly through binding to nitric oxide (NO), preventing its normal function. NO is a potent vasodilator and also inhibits formation of plaque-promoting LDLs (sometimes called "bad cholesterol") oxidized form. [15]

This overall degradation of blood cells also releases heme from them. Loose heme can cause oxidation of endothelial and LDL proteins, which results in plaques. [15]

Glycation pathway via Amadori rearrangement (in HbA1c, R is typically N-terminal valine). GlycationViaAmadoriRgmt.svg
Glycation pathway via Amadori rearrangement (in HbA1c, R is typically N-terminal valine).

Principle in medical diagnostics

Glycation of proteins is a frequent occurrence, but in the case of hemoglobin, a nonenzymatic condensation reaction occurs between glucose and the N-end of the beta chain. This reaction produces a Schiff base (R−N=CHR', R=beta chain, CHR'=glucose-derived), which is itself converted to 1-deoxyfructose. This second conversion is an example of an Amadori rearrangement.[ citation needed ]

When blood glucose levels are high, glucose molecules attach to the hemoglobin in red blood cells. The longer hyperglycemia occurs in blood, the more glucose binds to hemoglobin in the red blood cells and the higher the glycated hemoglobin. [17]

Once a hemoglobin molecule is glycated, it remains that way. A buildup of glycated hemoglobin within the red cell, therefore, reflects the average level of glucose to which the cell has been exposed during its life-cycle. Measuring glycated hemoglobin assesses the effectiveness of therapy by monitoring long-term serum glucose regulation.

A1c is a weighted average of blood glucose levels during the life of the red blood cells (117 days for men and 106 days in women [18] ). Therefore, glucose levels on days nearer to the test contribute substantially more to the level of A1c than the levels in days further from the test. [19]

This is also supported by data from clinical practice showing that HbA1c levels improved significantly after 20 days from start or intensification of glucose-lowering treatment. [20]

Measurement

Several techniques are used to measure hemoglobin A1c. Laboratories may use high-performance liquid chromatography, immunoassay, enzymatic assay, capillary electrophoresis, or boronate affinity chromatography. Point of care (e.g., doctor's office) devices use immunoassay boronate affinity chromatography. [17]

In the United States, HbA1c testing laboratories are certified by the National Glycohemoglobin Standardization Program to standardize them against the results of the 1993 Diabetes Control and Complications Trial (DCCT). [21] An additional percentage scale, Mono S has previously been in use by Sweden and KO500 is in use in Japan. [22] [23]

Switch to IFCC units

The American Diabetes Association, European Association for the Study of Diabetes, and International Diabetes Federation have agreed that, in the future, HbA1c is to be reported in the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) units. [24] IFCC reporting was introduced in Europe except for the UK in 2003; [25] the UK carried out dual reporting from 1 June 2009 [26] until 1 October 2011.

Conversion between DCCT and IFCC is by the following equation: [27]

Interpretation of results

Laboratory results may differ depending on the analytical technique, the age of the subject, and biological variation among individuals. Higher levels of HbA1c are found in people with persistently elevated blood sugar, as in diabetes mellitus. While diabetic patient treatment goals vary, many include a target range of HbA1c values. A diabetic person with good glucose control has an HbA1c level that is close to or within the reference range.[ citation needed ]

The International Diabetes Federation and the American College of Endocrinology recommend HbA1c values below 48 mmol/mol (6.5 DCCT %), while the American Diabetes Association recommends HbA1c be below 53 mmol/mol (7.0 DCCT %) for most patients. [28] Results from large trials in 2008–09 suggested that a target below 53 mmol/mol (7.0 DCCT %) for older adults with type 2 diabetes may be excessive: Below 53 mmol/mol, the health benefits of reduced A1c become smaller, and the intensive glycemic control required to reach this level leads to an increased rate of dangerous hypoglycemic episodes. [29]

A retrospective study of 47,970 type 2 diabetes patients, aged 50 years and older, found that patients with an HbA1c more than 48 mmol/mol (6.5 DCCT %) had an increased mortality rate, [30] but a later international study contradicted these findings. [31] [32] [33]

A review of the UKPDS, Action to Control Cardiovascular Risk in Diabetes (ACCORD), Advance and Veterans Affairs Diabetes Trials (VADT) estimated that the risks of the main complications of diabetes (diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, and macrovascular disease) decreased by about 3% for every 1 mmol/mol decrease in HbA1c. [34]

However, a trial by ACCORD designed specifically to determine whether reducing HbA1c below 42 mmol/mol (6.0 DCCT %) using increased amounts of medication would reduce the rate of cardiovascular events found higher mortality with this intensive therapy, so much so that the trial was terminated 17 months early. [35]

Practitioners must consider patients' health, their risk of hypoglycemia, and their specific health risks when setting a target HbA1c level. Because patients are responsible for averting or responding to their own hypoglycemic episodes, their input and the doctors' assessments of the patients' self-care skills are also important.[ citation needed ]

Persistent elevations in blood sugar (and, therefore, HbA1c) increase the risk of long-term vascular complications of diabetes, such as coronary disease, heart attack, stroke, heart failure, kidney failure, blindness, erectile dysfunction, neuropathy (loss of sensation, especially in the feet), gangrene, and gastroparesis (slowed emptying of the stomach). Poor blood glucose control also increases the risk of short-term complications of surgery such as poor wound healing.[ citation needed ]

All-cause mortality is higher above 64 mmol/mol (8.0 DCCT%) HbA1c as well as below 42 mmol/mol (6.0 DCCT %) in diabetic patients, and above 42 mmol/mol (6.0 DCCT %) as well as below 31 mmol/mol (5.0 DCCT %) in non-diabetic persons, indicating the risks of hyperglycemia and hypoglycemia, respectively. [7] Similar risk results are seen for cardiovascular disease. [7]

The 2022 ADA guidelines reaffirmed the recommendation that HbA1c should be maintained below 7.0% for most patients. Higher target values are appropriate for children and adolescents, patients with extensive co-morbid illness and those with a history of severe hypoglycemia. More stringent targets (<6.0%) are preferred for pregnant patients if this can be achieved without significant hypoglycemia. [36]

Factors other than glucose that affect A1c

Lower-than-expected levels of HbA1c can be seen in people with shortened red blood cell lifespans, such as with glucose-6-phosphate dehydrogenase deficiency, sickle-cell disease, or any other condition causing premature red blood cell death. For these patients, alternate assessment with fructosamine or glycated albumin is recommended; these methods reflect glycemic control over the preceding 2-3 weeks. [37] Blood donation will result in rapid replacement of lost RBCs with newly formed red blood cells. Since these new RBCs will have only existed for a short period of time, their presence will lead HbA1c to underestimate the actual average levels. There may also be distortions resulting from blood donation during the preceding two months, due to an abnormal synchronization of the age of the RBCs, resulting in an older than normal average blood cell life (resulting in an overestimate of actual average blood glucose levels). Conversely, higher-than-expected levels can be seen in people with a longer red blood cell lifespan, such as with iron deficiency. [38]

Results can be unreliable in many circumstances, for example after blood loss, after surgery, blood transfusions, anemia, or high erythrocyte turnover; in the presence of chronic renal or liver disease; after administration of high-dose vitamin C; or erythropoetin treatment. [39] Hypothyroidism can artificially raise the A1c. [40] [41] [42] In general, the reference range (that found in healthy young persons), is about 30–33 mmol/mol (4.9–5.2 DCCT %). [43] The mean HbA1c for diabetics type 1 in Sweden in 2014 was 63 mmol/mol (7.9 DCCT%) and for type 2, 61 mmol/mol (7.7 DCCT%). [44] HbA1c levels show a small, but statistically significant, progressive uptick with age; the clinical importance of this increase is unclear. [37]

Mapping from A1c to estimated average glucose

The approximate mapping between HbA1c values given in DCCT percentage (%) and eAG (estimated average glucose) measurements is given by the following equation: [39]

eAG(mg/dL) = 28.7 × A1C − 46.7
eAG(mmol/L) = 1.59 × A1C − 2.59
(Data in parentheses are 95% confidence intervals>)
HbA1ceAG
 %mmol/mol [45] mmol/Lmg/dL
5315.4 (4.2–6.7)97 (76–120)
6427.0 (5.5–8.5)126 (100–152)
7538.6 (6.8–10.3)154 (123–185)
86410.2 (8.1–12.1)183 (147–217)
97511.8 (9.4–13.9)212 (170–249)
108613.4 (10.7–15.7)240 (193–282)
119714.9 (12.0–17.5)269 (217–314)
1210816.5 (13.3–19.3)298 (240–347)
1311918.1 (15–21)326 (260–380)
1413019.7 (16–23)355 (290–410)
1514021.3 (17–25)384 (310–440)
1615122.9 (19–26)413 (330–480)
1716224.5 (20–28)441 (460–510)
1817326.1 (21–30)470 (380–540)
1918427.7 (23–32)499 (410–570)

Normal, prediabetic, and diabetic ranges

The 2010 American Diabetes Association Standards of Medical Care in Diabetes added the HbA1c ≥ 48 mmol/mol (≥6.5 DCCT %) as another criterion for the diagnosis of diabetes. [46]

Diagnostic standard for HbA1c in diabetes [47]
Diagnosis"IFCC" HbA1c"DCCT" HbA1c"Mono S" HbA1c
Normal< 40 mmol/mol< 5.7%< 4.7%
Prediabetes40–47 mmol/mol5.7–6.4%4.7–5.4%
Diabetes≥ 48 mmol/mol≥ 6.5%> 5.5%

Indications and uses

Glycated hemoglobin testing is recommended for both checking the blood sugar control in people who might be prediabetic and monitoring blood sugar control in patients with more elevated levels, termed diabetes mellitus. For a single blood sample, it provides far more revealing information on glycemic behavior than a fasting blood sugar value. However, fasting blood sugar tests are crucial in making treatment decisions. The American Diabetes Association guidelines are similar to others in advising that the glycated hemoglobin test be performed at least twice a year in patients with diabetes who are meeting treatment goals (and who have stable glycemic control) and quarterly in patients with diabetes whose therapy has changed or who are not meeting glycemic goals. [48] [36]

Glycated hemoglobin measurement is not appropriate where a change in diet or treatment has been made within six weeks. Likewise, the test assumes a normal red blood cell aging process and mix of hemoglobin subtypes (predominantly HbA in normal adults). Hence, people with recent blood loss, hemolytic anemia, or genetic differences in the hemoglobin molecule (hemoglobinopathy) such as sickle-cell disease and other conditions, as well as those who have donated blood recently, are not suitable for this test. [49]

Due to glycated hemoglobin's variability (as shown in the table above), additional measures should be checked in patients at or near recommended goals. People with HbA1c values at 64 mmol/mol or less should be provided additional testing to determine whether the HbA1c values are due to averaging out high blood glucose (hyperglycemia) with low blood glucose (hypoglycemia) or the HbA1c is more reflective of an elevated blood glucose that does not vary much throughout the day. Devices such as continuous blood glucose monitoring allow people with diabetes to determine their blood glucose levels on a continuous basis, testing every few minutes. Continuous use of blood glucose monitors is becoming more common, and the devices are covered by many health insurance plans, including Medicare in the United States. The supplies tend to be expensive, since the sensors must be changed at least every 2 weeks. Another useful test in determining if HbA1c values are due to wide variations of blood glucose throughout the day is 1,5-anhydroglucitol, also known as GlycoMark. GlycoMark reflects only the times that the person experiences hyperglycemia above 180 mg/dL over a two-week period.[ citation needed ]

Concentrations of hemoglobin A1 (HbA1) are increased, both in diabetic patients and in patients with kidney failure, when measured by ion-exchange chromatography. The thiobarbituric acid method (a chemical method specific for the detection of glycation) shows that patients with kidney failure have values for glycated hemoglobin similar to those observed in normal subjects, suggesting that the high values in these patients are a result of binding of something other than glucose to hemoglobin. [50]

In autoimmune hemolytic anemia, concentrations of HbA1 is undetectable. Administration of prednisolone will allow the HbA1 to be detected. [51] The alternative fructosamine test may be used in these circumstances and it also reflects an average of blood glucose levels over the preceding 2 to 3 weeks. [52]

All the major institutions such as the International Expert Committee Report, drawn from the International Diabetes Federation, the European Association for the Study of Diabetes, and the American Diabetes Association, suggest the HbA1c level of 48 mmol/mol (6.5 DCCT %) as a diagnostic level. [53] The Committee Report further states that, when HbA1c testing cannot be done, the fasting and glucose-tolerance tests be done. Screening for diabetes during pregnancy continues to require fasting and glucose-tolerance measurements for gestational diabetes at 24 to 28 weeks gestation, although glycated hemoglobin may be used for screening at the first prenatal visit. [37]

Modification by diet

Meta-analysis has shown probiotics to cause a statistically significant reduction in glycated hemoglobin in type-2 diabetics. [54] Trials with multiple strains of probiotics had statistically significant reductions in glycated hemoglobin, whereas trials with single strains did not. [54]

Standardization and traceability

Most clinical studies recommend the use of HbA1c assays that are traceable to the DCCT assay. [55] The National Glycohemoglobin Standardization Program (NGSP) and IFCC have improved assay standardization. [37] For initial diagnosis of diabetes, only HbA1c methods that are NGSP-certified should be used, not point-of-care testing devices. [36] Analytical performance has been a problem with earlier point-of-care devices for HbA1c testing, specifically large standard deviations and negative bias. [37]

Veterinary medicine

HbA1c testing has not been found useful in the monitoring during the treatment of cats and dogs with diabetes, and is not generally used; monitoring of fructosamine levels is favoured instead. [56]

See also

Notes

  1. "Glycosylated haemoglobin" is a common misnomer because glycation and glycosylation are different processes, of which only the former is relevant in this case. Glycation is a non-enzymatic process, while glycosylation is enzymatic.

Related Research Articles

<span class="mw-page-title-main">Blood glucose monitoring</span> Use of a glucose monitor for testing the concentration of glucose in the blood

Blood glucose monitoring is the use of a glucose meter for testing the concentration of glucose in the blood (glycemia). Particularly important in diabetes management, a blood glucose test is typically performed by piercing the skin to draw blood, then applying the blood to a chemically active disposable 'test-strip'. The other main option is continuous glucose monitoring (CGM). Different manufacturers use different technology, but most systems measure an electrical characteristic and use this to determine the glucose level in the blood. Skin-prick methods measure capillary blood glucose, whereas CGM correlates interstitial fluid glucose level to blood glucose level. Measurements may occur after fasting or at random nonfasting intervals, each of which informs diagnosis or monitoring in different ways.

<span class="mw-page-title-main">Hyperglycemia</span> Too much blood sugar, usually because of diabetes

Hyperglycemia or hyperglycaemia is a condition where unusually high amount of glucose is present in blood. It is defined as blood glucose level exceeding 6.9 mmol/L after fasting for 8 hours and 10 mmol/L 2 hours after eating.

<span class="mw-page-title-main">Type 2 diabetes</span> Form of diabetes mellitus

Type 2 diabetes (T2D), formerly known as adult-onset diabetes, is a form of diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. Common symptoms include increased thirst, frequent urination, fatigue and unexplained weight loss. Other symptoms include increased hunger, having a sensation of pins and needles, and sores (wounds) that heal slowly. Symptoms often develop slowly. Long-term complications from high blood sugar include heart disease, stroke, diabetic retinopathy, which can result in blindness, kidney failure, and poor blood flow in the lower-limbs, which may lead to amputations. The sudden onset of hyperosmolar hyperglycemic state may occur; however, ketoacidosis is uncommon.

Drugs used in diabetes treat types of diabetes mellitus by decreasing glucose levels in the blood. With the exception of insulin, most GLP-1 receptor agonists, and pramlintide, all diabetes medications are administered orally and are thus called oral hypoglycemic agents or oral antihyperglycemic agents. There are different classes of hypoglycemic drugs, and selection of the appropriate agent depends on the nature of diabetes, age, and situation of the person, as well as other patient factors.

<span class="mw-page-title-main">Blood sugar level</span> Concentration of glucose present in the blood (Glycaemia)

The blood sugar level, blood sugar concentration, blood glucose level, or glycemia is the measure of glucose concentrated in the blood. The body tightly regulates blood glucose levels as a part of metabolic homeostasis.

<span class="mw-page-title-main">Gestational diabetes</span> High blood sugar levels during pregnancy

Gestational diabetes is a condition in which a woman without diabetes develops high blood sugar levels during pregnancy. Gestational diabetes generally results in few symptoms; however, obesity increases the rate of pre-eclampsia, cesarean sections, and embryo macrosomia, as well as gestational diabetes. Babies born to individuals with poorly treated gestational diabetes are at increased risk of macrosomia, of having hypoglycemia after birth, and of jaundice. If untreated, diabetes can also result in stillbirth. Long term, children are at higher risk of being overweight and of developing type 2 diabetes.

Steroid-induced diabetes is characterized as an unusual rise in blood sugar that is linked to the use of glucocorticoids in a patient who may or may not have had diabetes in the past.

<span class="mw-page-title-main">Type 1 diabetes</span> Form of diabetes mellitus

Type 1 diabetes (T1D), formerly known as juvenile diabetes, is an autoimmune disease that occurs when pancreatic cells are destroyed by the body's immune system. In healthy persons, beta cells produce insulin. Insulin is a hormone required by the body to store and convert blood sugar into energy. T1D results in high blood sugar levels in the body prior to treatment. Common symptoms include frequent urination, increased thirst, increased hunger, weight loss, and other complications. Additional symptoms may include blurry vision, tiredness, and slow wound healing. While some cases take longer, symptoms usually appear within weeks or a few months.

The main goal of diabetes management is to keep blood glucose (BG) levels as normal as possible. If diabetes is not well controlled, further challenges to health may occur. People with diabetes can measure blood sugar by various methods, such as with a BG meter or a continuous glucose monitor, which monitors over several days. Glucose can also be measured by analysis of a routine blood sample. Usually, people are recommended to control diet, exercise, and maintain a healthy weight, although some people may need medications to control their blood sugar levels. Other goals of diabetes management are to prevent or treat complications that can result from the disease itself and from its treatment.

Fructosamines are compounds that result from glycation reactions between glucose and a primary amine, followed by isomerization via the Amadori rearrangement. Biologically, fructosamines are recognized by fructosamine-3-kinase, which may trigger the degradation of advanced glycation end-products. Fructosamine can also refer to the specific compound 1-amino-1-deoxy-D-fructose (isoglucosamine), first synthesized by Nobel laureate Hermann Emil Fischer in 1886.

The polyol pathway is a two-step process that converts glucose to fructose. In this pathway glucose is reduced to sorbitol, which is subsequently oxidized to fructose. It is also called the sorbitol-aldose reductase pathway.

Alpha-glucosidase inhibitors (AGIs) are oral anti-diabetic drugs used for diabetes mellitus type 2 that work by preventing the digestion of carbohydrates. They are found in raw plants/herbs such as cinnamon and bacteria. Carbohydrates are normally converted into simple sugars (monosaccharides) by alpha-glucosidase enzymes present on cells lining the intestine, enabling monosaccharides to be absorbed through the intestine. Hence, alpha-glucosidase inhibitors reduce the impact of dietary carbohydrates on blood sugar.

A diabetic diet is a diet that is used by people with diabetes mellitus or high blood sugar to minimize symptoms and dangerous complications of long-term elevations in blood sugar.

<span class="mw-page-title-main">AIDA interactive educational freeware diabetes simulator</span> Medical simulation computer program

AIDA is a freeware computer program that permits the interactive simulation of plasma insulin and blood glucose profiles for demonstration, teaching, self-learning, and research purposes. Originally developed in 1991, it has been updated and enhanced since, and made available without charge from 1996 on the World Wide Web. The program, which is still being updated, has gone through a number of revisions and developments in the 16+ years since its original internet launch. Further copies of the simulator have been made available, in the past, on diskette by the system developers and from the British Diabetic Association (BDA) — now called 'Diabetes UK' — London, England, following the BDA's own independent evaluation of the software. More than 1,075,000 diabetes simulations have been run via a web-based version of the AIDA diabetes simulator.

<span class="mw-page-title-main">Prediabetes</span> Predisease state of hyperglycemia with high risk for diabetes

Prediabetes is a component of metabolic syndrome and is characterized by elevated blood sugar levels that fall below the threshold to diagnose diabetes mellitus. It usually does not cause symptoms but people with prediabetes often have obesity, dyslipidemia with high triglycerides and/or low HDL cholesterol, and hypertension. It is also associated with increased risk for cardiovascular disease (CVD). Prediabetes is more accurately considered an early stage of diabetes as health complications associated with type 2 diabetes often occur before the diagnosis of diabetes.

The dawn phenomenon, sometimes called the dawn effect, is an observed increase in blood sugar (glucose) levels that takes place in the early-morning, often between 2 a.m. and 8 a.m. First described by Schmidt in 1981 as an increase of blood glucose or insulin demand occurring at dawn, this naturally occurring phenomenon is frequently seen among the general population and is clinically relevant for patients with diabetes as it can affect their medical management. In contrast to Chronic Somogyi rebound, the dawn phenomenon is not associated with nocturnal hypoglycemia.

<span class="mw-page-title-main">Postprandial glucose test</span> Medical test

A postprandial glucose (PPG) test is a blood glucose test that determines the amount of glucose in the plasma after a meal. The diagnosis is typically restricted to postprandial hyperglycemia due to lack of strong evidence of co-relation with a diagnosis of diabetes.

<span class="mw-page-title-main">Remogliflozin etabonate</span> Chemical compound

Remogliflozin etabonate (INN/USAN) is a drug of the gliflozin class for the treatment of non-alcoholic steatohepatitis ("NASH") and type 2 diabetes. Remogliflozin was discovered by the Japanese company Kissei Pharmaceutical and is currently being developed by BHV Pharma, a wholly owned subsidiary of North Carolina, US-based Avolynt, and Glenmark Pharmaceuticals through a collaboration with BHV. In 2002, GlaxoSmithKline (GSK) received a license to use it. From 2002 to 2009, GSK carried out a significant clinical development program for the treatment of type-2 diabetes mellitus in various nations across the world and obesity in the UK. Remogliflozin etabonate's pharmacokinetics, pharmacodynamics, and clinical dose regimens were characterized in 18 Phase I and 2 Phase II investigations. Due to financial concerns, GSK stopped working on remogliflozin and sergliflozin, two further SGLT2 inhibitors that were licensed to the company, in 2009. Remogliflozin was commercially launched first in India by Glenmark in May 2019.

<span class="mw-page-title-main">1,5-Anhydroglucitol</span> Chemical compound

1,5-Anhydroglucitol, also known as 1,5-AG, is a naturally occurring monosaccharide found in nearly all foods. Blood concentrations of 1,5-anhydroglucitol decrease during times of hyperglycemia above 180 mg/dL, and return to normal levels after approximately 2 weeks in the absence of hyperglycemia. As a result, it can be used for people with either type-1 or type-2 diabetes mellitus to identify glycemic variability or a history of high blood glucose even if current glycemic measurements such as hemoglobin A1c (HbA1c) and blood glucose monitoring have near normal values. Despite this possible use and its approval by the FDA, 1,5-AG tests are rarely ordered. There is some data suggesting that 1,5-AG values are useful to fill the gap and offer complementary information to HbA1c and fructosamine tests.

<span class="mw-page-title-main">Diabetes</span> Group of endocrine diseases characterized by high blood sugar levels

Diabetes, also known as diabetes mellitus, is a group of common endocrine diseases characterized by sustained high blood sugar levels. Diabetes is due to either the pancreas not producing enough insulin, or the cells of the body becoming unresponsive to the hormone's effects. Classic symptoms include polydipsia, polyuria, weight loss, and blurred vision. If left untreated, the disease can lead to various health complications, including disorders of the cardiovascular system, eye, kidney, and nerves. Diabetes accounts for approximately 4.2 million deaths every year, with an estimated 1.5 million caused by either untreated or poorly treated diabetes.

References

  1. Bunn HF, Higgins PJ (July 1981). "Reaction of monosaccharides with proteins: possible evolutionary significance". Science. 213 (4504): 222–4. Bibcode:1981Sci...213..222B. doi:10.1126/science.12192669. PMID   12192669.
  2. McPherson JD, Shilton BH, Walton DJ (March 1988). "Role of fructose in glycation and cross-linking of proteins". Biochemistry. 27 (6): 1901–7. doi:10.1021/bi00406a016. PMID   3132203.
  3. Pongudom, Saranya (1 November 2019). "Determination of Normal HbA1C Levels in Non-Diabetic Patients with Hemoglobin E". Annals of Clinical & Laboratory Science . 49 (6): 804–9. PMID   31882432.
  4. Miedema K (2005). "Standardization of HbA1c and Optimal Range of Monitoring". Scandinavian Journal of Clinical and Laboratory Investigation. 240: 61–72. doi:10.1080/00365510500236143. PMID   16112961. S2CID   30162967.
  5. 1 2 Elizabeth Weiser Caswell Diabetes Institute. Hemoglobin A1c Fact Sheet. Accessed 2024-07-02.
  6. "2. Glycated haemoglobin (HbA1c) for the diagnosis of diabetes". Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation. WHO Guidelines Approved by the Guidelines Review Committee. World Health Organization. 2011. PMID   26158184. NBK304271.
  7. 1 2 3 Cavero-Redondo I, Peleteiro B, Martínez-Vizcaíno V (2017). "Glycated haemoglobin A1c as a risk factor of cardiovascular outcomes and all-cause mortality in diabetic and non-diabetic populations: a systematic review and meta-analysis". BMJ Open . 7 (7): e015949. doi:10.1136/bmjopen-2017-015949. PMC   5642750 . PMID   28760792.
  8. Oliwia Witczak, Trine B. Haugen (25 November 2014). "Glycated or glycosylated?". Journal of the Norwegian Medical Association . 134 (22): 2179. doi: 10.4045/tidsskr.14.0172 . PMID   25423986. Archived from the original on 5 December 2018. Retrieved 5 December 2018. Hospitals should ensure that the correct term for HbA1c — glycated haemoglobin — is now to be found in laboratory manuals.
  9. Peterson KP, Pavlovich JG, Goldstein D, Little R, England J, Peterson CM (1998). "What is hemoglobin A1c? An analysis of glycated hemoglobins by electrospray ionization mass spectrometry". Clinical Chemistry . 44 (9): 1951–8. doi: 10.1093/clinchem/44.9.1951 . PMID   9732983. Archived from the original on 2015-09-23. Retrieved 2024-06-21.
  10. Huisman TH, Martis EA, Dozy A (1958). "Chromatography of hemoglobin types on carboxymethylcellulose". J. Lab. Clin. Med. 52 (2): 312–327. PMID   13564011.
  11. Bookchin RM, Gallop PM (1968). "Structure of haemoglobin A1c: nature of the N-terminal beta chain blocking group". Biochem. Biophys. Res. Commun. 32 (1): 86–93. doi:10.1016/0006-291X(68)90430-0. PMID   4874776.
  12. Rahbar S, Blumenfeld O, Ranney HM (1969). "Studies of an unusual hemoglobin in patients with diabetes mellitus". Biochem. Biophys. Res. Commun. 36 (5): 838–843. doi:10.1016/0006-291X(69)90685-8. PMID   5808299.
  13. Bunn HF, Haney DN, Gabbay KH, Gallop PM (1975). "Further identification of the nature and linkage of the carbohydrate in haemoglobin A1c". Biochem. Biophys. Res. Commun. 67 (1): 103–9. doi:10.1016/0006-291X(75)90289-2. PMID   1201013.
  14. Koenig RJ, Peterson CM, Jones RL, Saudek C, Lehrman M, Cerami A (1976). "Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus". N. Engl. J. Med. 295 (8): 417–420. doi:10.1056/NEJM197608192950804. PMID   934240.
  15. 1 2 3 4 Saleh, Jumana (2015-08-26). "Glycated hemoglobin and its spinoffs: Cardiovascular disease markers or risk factors?". World Journal of Cardiology. 7 (8): 449–453. doi: 10.4330/wjc.v7.i8.449 . PMC   4549778 . PMID   26322184.
  16. Yaylayan, Varoujan A.; Huyghues-Despointes, Alexis (1994). "Chemistry of Amadori Rearrangement Products: Analysis, Synthesis, Kinetics, Reactions, and Spectroscopic Properties". Critical Reviews in Food Science and Nutrition. 34 (4): 321–369. doi:10.1080/10408399409527667. PMID   7945894.
  17. 1 2 Pohanka M (March 2021). "Glycated Hemoglobin and Methods for Its Point of Care Testing". Biosensors. 11 (3): 70. doi: 10.3390/bios11030070 . PMC   8000313 . PMID   33806493.
  18. Unnikrishnan, Ranjit (Jul–Aug 2012). "Drugs affecting HbA1c levels". Indian Journal of Endocrinology and Metabolism. 16 (4): 528–531. doi: 10.4103/2230-8210.98004 . PMC   3401751 . PMID   22837911.
  19. "NGSP: HbA1c and eAG". ngsp.org. Archived from the original on 2015-10-15. Retrieved 2024-06-21.
  20. Sidorenkov G, Haaijer-Ruskamp FM, de Zeeuw D, Denig P (2011). "A longitudinal study examining adherence to guidelines in diabetes care according to different definitions of adequacy and timeliness". PLOS ONE. 6 (9): e24278. Bibcode:2011PLoSO...624278S. doi: 10.1371/journal.pone.0024278 . PMC   3169586 . PMID   21931669.
  21. Developing Point of care HbA1c tests for Diabetes monitoring Archived 2008-08-29 at the Wayback Machine , Barry Plant, Originally Published IVDT July/August 2008
  22. [Clinical Chemistry 50:1 166–174 (2004)]
  23. 1 2 HbA1c in a new way Archived 2013-09-09 at the Wayback Machine By the Swedish Diabetes Association. Retrieved 2023-02-01.
  24. Geistanger A, Arends S, Berding C, Hoshino T, Jeppsson JO, Little R, Siebelder C, Weykamp C (August 2008). "Statistical methods for monitoring the relationship between the IFCC reference measurement procedure for hemoglobin A1c and the designated comparison methods in the United States, Japan, and Sweden". Clin. Chem. 54 (8): 1379–85. doi: 10.1373/clinchem.2008.103556 . PMID   18539643.
  25. Manley S, John WG, Marshall S (July 2004). "Introduction of IFCC reference method for calibration of HbA: implications for clinical care". Diabet. Med. 21 (7): 673–6. doi:10.1111/j.1464-5491.2004.01311.x. PMID   15209757. S2CID   30468208.
  26. "Standardisation of the reference method for the measurement of HbA1c to improve diabetes care" (PDF) (Press release). Association for Clinical Biochemistry and Laboratory Medicine (with Diabetes UK). April 2008. Archived from the original (PDF) on 2011-07-22. Retrieved 2009-07-02.
  27. "HbA1c Standardisation For Laboratory Professionals" (PDF). Diabetes UK (with Association for Clinical Biochemistry and Laboratory Medicine). Archived (PDF) from the original on 2011-07-20. Retrieved 2009-07-02.
  28. "Executive Summary: Standards of medical care in diabetes — 2009". Diabetes Care. 32 (Suppl 1): S6 –S12. 2009. doi:10.2337/dc09-S006. PMC   2613586 . PMID   19118288.
  29. Lehman R, Krumholz HM (2009). "Tight control of blood glucose in long standing type 2 diabetes". Br Med J. 338: b800. doi:10.1136/bmj.b800. PMID   19264821. S2CID   45188963.
  30. Currie, Craig J; Peters, John R; Tynan, Aodán; Evans, Marc; Heine, Robert J; Bracco, Oswaldo L; Zagar, Tony; Poole, Chris D (2010). "Survival as a function of HbA1c in people with type 2 diabetes: a retrospective cohort study". The Lancet. 375 (9713): 481–9. doi:10.1016/S0140-6736(09)61969-3. PMID   20110121. S2CID   21223855.
  31. "Advance Study Contradicts ACCORD Findings". Diabetes Self-Management. 2008-03-07. Archived from the original on 2012-07-17. Retrieved 2013-06-10.
  32. ADVANCE Collaborative Group; Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F (June 2008). "Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes". N Engl J Med. 358 (24): 2560–72. doi:10.1056/NEJMoa0802987. hdl: 10072/26242 . PMID   18539916. Conclusions: A strategy of intensive glucose control, involving gliclazide (modified release) and other drugs as required, that lowered the glycated hemoglobin value to 6.5% yielded a 10% relative reduction in the combined outcome of major macrovascular and microvascular events, primarily as a consequence of a 21% relative reduction in nephropathy (Clinical trial number NCT00145925 for "Blood Pressure and Glucose Lowering for the Prevention of Vascular Disease in High Risk Patients With Type 2 Diabetes" at ClinicalTrials.gov)
  33. Heller, Simon R. (2009-11-01). "A Summary of the Advance Trial". Diabetes Care. 32 (Suppl 2): S357–61. doi:10.2337/dc09-S339. PMC   2811451 . PMID   19875581.
  34. Shubrook JH, Shubrook J (2010). "Risks and benefits of attaining HbA(1c) goals: Examining the evidence". The Journal of the American Osteopathic Association. 110 (7 Suppl 7): e7 –e12. PMID   20644204.
  35. Gerstein HC, Miller ME, Byington RP, et al. (2008). "Effects of Intensive Glucose Lowering in Type 2 Diabetes". New England Journal of Medicine. 358 (24): 2545–59. doi: 10.1056/NEJMoa0802743 . PMC   4551392 . PMID   18539917.
  36. 1 2 3 American Diabetes Association Professional Practice Committee (January 2022). "6. Glycemic Targets: Standards of Medical Care in Diabetes-2022". Diabetes Care. 45 (Suppl 1): S83 –S96. doi:10.2337/dc22-S006. PMID   34964868.
  37. 1 2 3 4 5 Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Lernmark Å, Metzger BE, Nathan DM, Sue Kirkman M (August 2023). "Executive Summary: Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus". Clin Chem. 69 (8): 777–784. doi: 10.1093/clinchem/hvad079 . PMID   37562009.
  38. Kilpatrick ES, Bloomgarden ZT, Zimmet PZ (2009). "Is haemoglobin A1c a step forward for diagnosing diabetes?". BMJ. 339: b4432. doi:10.1136/bmj.b4432. PMID   19903702. S2CID   36941786.
  39. 1 2 Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ (2008). "Translating the A1C assay into estimated average glucose values". Diabetes Care. 31 (8): 1473–8. doi:10.2337/dc08-0545. PMC   2742903 . PMID   18540046. Archived from the original on 2012-02-19. Retrieved 2009-09-24.
  40. "Hypothyroidism Falsely Raises HbA1c and Glycated Albumin Levels". Diabetes In Control. 12 November 2010. Archived from the original on 23 September 2015. Retrieved 6 August 2015.
  41. Kim, M. K.; Kwon, H. S.; Baek, K. H.; Lee, J. H.; Park, W. C.; Sohn, H. S.; Lee, K. W.; Song, K. H. (7 September 2010). "Effects of Thyroid Hormone on A1C and Glycated Albumin Levels in Nondiabetic Subjects With Overt Hypothyroidism". Diabetes Care. 33 (12): 2546–8. doi: 10.2337/dc10-0988 . PMC   2992186 . PMID   20823345.
  42. Bhattacharjee R, Thukral A, Chakraborty PP, Roy A, Goswami S, Ghosh S, Mukhopadhyay P, Mukhopadhyay S, Chowdhury S (2017). "Effects of thyroid status on glycated hemoglobin". Indian J Endocrinol Metab. 21 (1): 26–30. doi: 10.4103/2230-8210.196017 . PMC   5240076 . PMID   28217494.
  43. Saaddine, Jinan B.; Fagot-Campagna, Anne; Rolka, Deborah; Narayan, K. M. Venkat; Geiss, Linda; Eberhardt, Mark; Flegal, Katherine M. (2002-08-01). "Distribution of HbA(1c) levels for children and young adults in the U.S.: Third National Health and Nutrition Examination Survey". Diabetes Care. 25 (8): 1326–30. doi: 10.2337/diacare.25.8.1326 . ISSN   0149-5992. PMID   12145229.
  44. "Nationella Diabetesregistret Årsrapport 2014 års resultat" (PDF). Nationella Diabetesregistret Årsrapport 2014 års resultat (in Swedish). Nationella Diabetes Registret. Archived (PDF) from the original on 2017-10-02. Retrieved 2015-12-14.
  45. "Change to HbA1c values". Diabetes UK. 2013. Archived from the original on 2013-07-26.
  46. "Executive summary: Standards of medical care in diabetes — 2010". Diabetes Care. 33 (Suppl 1): S4 –S10. January 2010. doi:10.2337/dc10-S004. PMC   2797389 . PMID   20042774. Archived from the original on 2010-01-13. Retrieved 2010-01-02.
  47. "Diagnosing Diabetes and Learning About Prediabetes". American Diabetes Association. Archived from the original on 28 July 2017. Retrieved 2 December 2018.
  48. American Diabetes Association (2007). "Standards of medical care in diabetes". Diabetes Care. 30 (Suppl 1): S4 –S41. doi: 10.2337/dc07-S004 . PMID   17192377.
  49. Klonoff, David C. (2019-03-22). "Hemoglobinopathies and Hemoglobin A1c in Diabetes Mellitus". Journal of Diabetes Science and Technology. 14 (1): 3–7. doi:10.1177/1932296819841698. PMC   7189151 . PMID   30897962.
  50. Bannon P, Lessard F, Lepage R, Joly JG, Dufresne L (March 1984). "Glycated hemoglobin in uremic patients as measured by affinity and ion-exchange chromatography". Clin Chem. 30 (3): 485–6. doi:10.1093/clinchem/30.3.485. PMID   6697506.
  51. "Undetectable Glycosylated Hemoglobin in Autoimmune Hemolytic Anemia" (PDF). repository.oai.yamaguchi-u.ac.jp. Archived (PDF) from the original on 2011-07-16. Retrieved 2009-08-31.
  52. Freitas PA, Ehlert LR, Camargo JL (2017). "Glycated albumin: a potential biomarker in diabetes". Arch Endocrinol Metab. 61 (3): 296–304. doi:10.1590/2359-3997000000272. PMC   10118799 . PMID   28699985.
  53. The International Expert Committee (2009). "International expert committee report on the role of the A1C assay in the diagnosis of diabetes". Diabetes Care. 32 (7): 1327–34. doi:10.2337/dc09-9033. PMC   2699715 . PMID   19502545.
  54. 1 2 Sun J, Buys NJ (2016). "Glucose- and glycaemic factor-lowering effects of probiotics on diabetes: a meta-analysis of randomised placebo-controlled trials". British Journal of Nutrition . 115 (7): 1167–77. doi: 10.1017/S0007114516000076 . PMID   26899960.
  55. Diabetes Control and Complications Trial Research Group; Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C (September 1993). "The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus". N Engl J Med. 329 (14): 977–986. doi:10.1056/NEJM199309303291401. PMID   8366922.
  56. Delack JB, Stogdale L (October 1983). "Glycosylated hemoglobin measurement in dogs and cats: implications for its utility in diabetic monitoring". Can Vet J. 24 (10): 308–311. PMC   1790442 . PMID   17422317.