Maturity-onset diabetes of the young

Last updated
Maturity-onset diabetes of the young (MODY)
Other namesMonogenic diabetes
Specialty Endocrinology

Maturity-onset diabetes of the young (MODY) refers to any of several hereditary forms of diabetes mellitus caused by mutations in an autosomal dominant gene disrupting insulin production. [1] Along with neonatal diabetes, MODY is a form of the conditions known as monogenic diabetes. While the more common types of diabetes (especially type 1 and type 2) involve more complex combinations of causes involving multiple genes and environmental factors, each forms of MODY are caused by changes to a single gene (monogenic). [2] HNF1A-MODY (MODY 3) are the most common forms.

Contents

Robert Tattersall and Stefan Fajans initially identified the phenomenon known as maturity onset diabetes of the young in a classic study published in the journal Diabetes in 1975. [3]

Signs and symptoms

MODY accounts for at least 1-5% of all diagnoses of diabetes mellitus, though 50-90% of cases are estimated to be misdiagnosed as type 1, or type 2 diabetes. [4] Estimated prevalence rates indicate 1 per 10,000 in adults, and 1 per 23,000 in children. [5] 50% of first-degree relatives will inherit the same mutation, giving them a greater than 95% lifetime risk of developing MODY themselves. [6] For this reason, correct diagnosis of this condition is important. Typically patients present with a strong family history of diabetes (i.e.: presence of diabetes before the age of 25 in two consecutive generations). [7]

There are two general types of clinical presentation.[ citation needed ]

While the goals of diabetes management are the same no matter what type, there are two primary advantages of confirming a diagnosis of MODY.[ citation needed ]

As it occurs infrequently, many cases of MODY are initially assumed to be more common forms of diabetes: type 1 if the patient is young and not overweight, type 2 if the patient is overweight, or gestational diabetes if the patient is pregnant. Standard diabetes treatments (insulin for type 1 and gestational diabetes, and oral hypoglycemic agents for type 2) are often initiated before the doctor suspects a more unusual form of diabetes.[ citation needed ]

Pathophysiology

The recognised forms of MODY are all due to ineffective insulin production or release by pancreatic beta cells. Several of the defects are mutations of transcription factor genes. One form is due to mutations of the glucokinase gene. For each form of MODY, multiple specific mutations involving different amino acid substitutions have been discovered. In some cases, there are significant differences in the activity of the mutant gene product that contribute to variations in the clinical features of the diabetes (such as degree of insulin deficiency or age of onset).[ citation needed ]

Diagnosis

The following characteristics suggest the possibility of a diagnosis of MODY in hyperglycemic and diabetic patients: [8]

The diagnosis of MODY is confirmed by specific gene testing available through commercial laboratories.

Classification

Heterozygous

MODY is inherited in an autosomal dominant fashion, and most patients therefore have other members of the family with diabetes; penetrance differs between the types (from 40% to 90%).

Type OMIM Gene/proteinDescription
HNF4A-MODY (MODY 1) 125850 hepatocyte nuclear factor 4αDue to a loss-of-function mutation in the HNF4α gene. 5%–10% cases.
GCK-MODY (MODY 2) 125851 glucokinase Due to any of several mutations in the GCK gene. 30%–70% cases. Mild fasting hyperglycemia throughout life. Small rise on glucose loading. Patients do not tend to get diabetes complications and do not require treatment [15] outside of pregnancy. [16]
HNF1A-MODY (MODY 3) 600496 hepatocyte nuclear factor 1αMutations of the HNF1α gene (a homeobox gene). 30%–70% of cases. Most common type of MODY in populations with European ancestry. [17] Tend to be responsive to sulfonylureas. Low renal threshold for glucose.
PDX1-MODY (MODY 4) 606392 insulin promoter factor-1Mutations of the IPF1 homeobox (Pdx1) gene. < 1% cases. Associated with pancreatic agenesis in homozygotes and occasionally in heterozygotes.
HNF1B-MODY (MODY 5) 137920 hepatocyte nuclear factor 1βOne of the less common forms of MODY, with some distinctive clinical features, including atrophy of the pancreas and several forms of renal disease. Defect in HNF-1 beta gene. 5%–10% cases.
NEUROD1-MODY (MODY 6) 606394 neurogenic differentiation 1Mutations of the gene for the transcription factor referred to as neurogenic differentiation 1. Very rare: 5 families reported to date.
KLF11-MODY (MODY 7) 610508 Kruppel-like factor 11 KLF11 has been associated with a form of diabetes [18] that has been characterized as "MODY7" by OMIM. [19]
CEL-MODY MODY 8 609812 Bile salt dependent lipase CEL has been associated with a form of diabetes [20] that has been characterized as "MODY8" by OMIM. [21] It is very rare with five families reported to date. It is associated with exocrine pancreatic dysfunction.
PAX4-MODY MODY 9 612225 PAX4 Pax4 is a transcription factor. MODY 9 is a very rare medical condition.
INS-MODY MODY 10 613370 INS Mutations in the insulin gene. Usually associated with neonatal diabetes. Rare < 1% cases.
BLK-MODY MODY 11 613375 BLK Mutated B-lymphocyte tyrosine kinase, which is also present in pancreatic islet cells. Very rare.
AAPL1-MODY MODY 14 616511 APPL1 Mutated anchor protein in the insulin signalling pathway. Newly discovered.

A newly discovered monogenetic form of diabetes is marked by a missense variant in the RyR2 gene. [22] It has not yet received a MODY type.

Homozygous

By definition, the forms of MODY are autosomal dominant, requiring only one abnormal gene to produce the disease; the severity of the disease is moderated by the presence of a second, normal allele which presumably functions normally. However, conditions involving people carrying two abnormal alleles have been identified. [23] Unsurprisingly, combined (homozygous) defects of these genes are much rarer and much more severe in their effects.[ citation needed ]

  • MODY2: Homozygous glucokinase deficiency causes severe congenital insulin deficiency resulting in persistent neonatal diabetes mellitus. About 6 cases have been reported worldwide. All have required insulin treatment from shortly after birth. The condition does not seem to improve with age.
  • MODY4: Homozygous IPF1 results in failure of the pancreas to form. Congenital absence of the pancreas, termed pancreatic agenesis, involves deficiency of both endocrine and exocrine functions of the pancreas.

Homozygous mutations in the other forms have not yet been described. Those mutations for which a homozygous form has not been described may be extremely rare, may result in clinical problems not yet recognized as connected to the monogenic disorder, or may be lethal for a fetus and not result in a viable child.[ citation needed ]

Treatment

In some forms of MODY, standard treatment is appropriate, though exceptions occur:

Chronic hyperglycemia due to any cause can eventually cause blood vessel damage and the microvascular complications of diabetes. The principal treatment goals for people with MODY — keeping the blood sugars as close to normal as possible ("good glycemic control"), while minimizing other vascular risk factors — are the same for all known forms of diabetes.[ citation needed ]

The tools for management are similar for all forms of diabetes: blood testing, changes in diet, physical exercise, oral hypoglycemic agents, and insulin injections. In many cases these goals can be achieved more easily with MODY than with ordinary types 1 and 2 diabetes. Some people with MODY may require insulin injections to achieve the same glycemic control that another person may attain with careful eating or an oral medication.[ citation needed ]

When oral hypoglycemic agents are used in MODY, the sulfonylureas remain the oral medication of first resort. When compared to patients with type 2 diabetes, MODY patients are often more sensitive to sulphonylureas, such that a lower dose should be used to initiate treatment to avoid hypoglycaemia. Patients with MODY less often suffer from obesity and insulin resistance than those with ordinary type 2 diabetes (for whom insulin sensitizers like metformin or the thiazolidinediones are often preferred over the sulfonylureas).[ citation needed ]

Epidemiology

According to data from Saxony, Germany, MODY was responsible for 2.4% of diabetes incidence in children younger than 15 years. [25]

History

The term MODY dates back to 1964, when diabetes mellitus was considered to have two main forms: juvenile-onset and maturity-onset, which roughly corresponded to what we now call type 1 and type 2. MODY was originally applied to any child or young adult who had persistent, asymptomatic hyperglycemia without progression to diabetic ketosis or ketoacidosis. In retrospect we can now recognize that this category covered a heterogeneous collection of disorders which included cases of dominantly inherited diabetes (the topic of this article, still called MODY today), as well as cases of what we would now call type 2 diabetes occurring in childhood or adolescence, and a few even rarer types of hyperglycemia (e.g., mitochondrial diabetes or mutant insulin). Many of these patients were treated with sulfonylureas with varying degrees of success.[ citation needed ]

The current usage of the term MODY dates from a case report published in 1974. [26] [27]

Since the 1990s, as the understanding of the pathophysiology of diabetes has improved, the concept and usage of MODY have become refined and narrower. It is now used as a synonym for dominantly inherited, monogenic defects of insulin secretion occurring at any age, and no longer includes any forms of type 2 diabetes. [28]

References

  1. "Monogenic Diabetes (Neonatal Diabetes Mellitus & MODY)". National Institute of Diabetes and Digestive and Kidney Diseases. Retrieved 2023-02-01.
  2. "Monogenic Diabetes (Neonatal Diabetes Mellitus & MODY)". National Institute of Diabetes and Digestive and Kidney Diseases. Retrieved 2023-02-10.
  3. Chennai, India, Dr. V Mohan (2020-07-15). "'Maturity Onset Diabetes of the Young (MODY) | Dr Mohans". Dr Mohan's Diabetes Center in Chennai.
  4. Tosur, Mustafa; Philipson, Louis H. (2022-09-01). "Precision diabetes: Lessons learned from maturity-onset diabetes of the young (MODY)". Journal of Diabetes Investigation. 13 (9): 1465–1471. doi:10.1111/jdi.13860. ISSN   2040-1124. PMC   9434589 . PMID   35638342.
  5. Nkonge, Ken Munene; Nkonge, Dennis Karani; Nkonge, Teresa Njeri (2020-11-04). "The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY)". Clinical Diabetes and Endocrinology. 6 (1): 20. doi: 10.1186/s40842-020-00112-5 . ISSN   2055-8260. PMC   7640483 . PMID   33292863.
  6. Kant, Ravi; Davis, Amanda; Verma, Vipin (2022-02-01). "Maturity-Onset Diabetes of the Young: Rapid Evidence Review". American Family Physician. 105 (2): 162–167. ISSN   1532-0650. PMID   35166506.
  7. Urakami, Tatsuhiko (2019-07-01). "Maturity-onset diabetes of the young (MODY): current perspectives on diagnosis and treatment". Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 12: 1047–1056. doi: 10.2147/dmso.s179793 . ISSN   1178-7007. PMC   6625604 . PMID   31360071.
  8. Urakami T (2019). "Maturity-onset diabetes of the young (MODY): current perspectives on diagnosis and treatment". Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 12. Diabetes Metabolic Syndrome & Obesity: 1047–1056. doi: 10.2147/DMSO.S179793 . PMC   6625604 . PMID   31360071.
  9. MODY (Report). Retrieved Jan 25, 2010.
  10. Urbanova J, Rypackova B, Prochazkova Z, Kucera P, Cerna M, Andel M, Heneberg P (2014). "Positivity for islet cell autoantibodies in patients with monogenic diabetes is associated with later diabetes onset and higher HbA1c level". Diabetic Medicine. 31 (4): 466–71. doi:10.1111/dme.12314. PMID   24102923. S2CID   1867195.
  11. Maturity Onset Diabetes, SparkPeople, retrieved Jan 21, 2010
  12. MODY (Report). Harvard. Retrieved January 23, 2010.
  13. Lerario, A. M.; Brito, L. P.; Mariani, B. M.; Fragoso, M. C.; Machado, M. A.; Teixeira, R. (2010). "A missense TCF1 mutation in a patient with MODY-3 and liver adenomatosis". Clinics. 65 (10): 1059–1060. doi:10.1590/S1807-59322010001000024. PMC   2972616 . PMID   21120312.
  14. Renal Cysts and Diabetes Syndrome (Report). Retrieved May 19, 2011.
  15. Steele AM, Shields BM, Wensley KJ, Colclough K, Ellard S, Hattersley AT (2014). "Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia". JAMA. 311 (3): 279–86. doi: 10.1001/jama.2013.283980 . hdl: 10871/15378 . PMID   24430320.
  16. Dickens LT, Letourneau LR, Sanyoura M, Greeley SA, Philipson LH, Naylor RN (2019). "Management and pregnancy outcomes of women with GCK-MODY enrolled in the US Monogenic Diabetes Registry". Acta Diabetologica. 56 (3): 405–411. doi:10.1007/s00592-018-1267-z. PMC   6468988 . PMID   30535721.
  17. Frayling, TM; Evans, JC; Bulman, MP; Pearson, E (February 2001). "beta-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors". Diabetes. 50 Suppl (1): S94-100. doi: 10.2337/diabetes.50.2007.S94 . PMID   11272211.
  18. Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V, et al. (March 2005). "Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function". Proc. Natl. Acad. Sci. U.S.A. 102 (13): 4807–12. doi: 10.1073/pnas.0409177102 . PMC   554843 . PMID   15774581.
  19. Online Mendelian Inheritance in Man (OMIM): MATURITY-ONSET DIABETES OF THE YOUNG, TYPE VII; MODY7 - 610508
  20. Raeder H, Johansson S, Holm PI, et al. (January 2006). "Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction". Nat. Genet. 38 (1): 54–62. doi:10.1038/ng1708. PMID   16369531. S2CID   8338877.
  21. Online Mendelian Inheritance in Man (OMIM): MATURITY-ONSET DIABETES OF THE YOUNG, TYPE VIII, WITH EXOCRINE DYSFUNCTION; MODY8 - 609812
  22. Bansal, V; Winkelmann, BR; Dietrich, JW; Boehm, BO (2024). "Whole-exome sequencing in familial type 2 diabetes identifies an atypical missense variant in the RyR2 gene". Frontiers in Endocrinology. 15: 1258982. doi: 10.3389/fendo.2024.1258982 . hdl: 10356/178608 . PMID   38444585.
  23. Dhavendra Kumar; D. J. Weatherall (2008). Genomics and clinical medicine. Oxford University Press US. pp. 184–. ISBN   978-0-19-518813-4 . Retrieved 12 June 2010.
  24. Urbanova, J.; et al. (2015). "Half-Life of Sulfonylureas in HNF1A and HNF4A Human MODY Patients is not Prolonged as Suggested by the Mouse Hnf1a-/- Model". Current Pharmaceutical Design. 21 (39): 5736–5748. doi:10.2174/1381612821666151008124036. PMID   26446475.
  25. Galler, Angela; Stange, Thoralf; Müller, Gabriele; Näke, Andrea; Vogel, Christian; Kapellen, Thomas; Bartelt, Heike; Kunath, Hildebrand; Koch, Rainer; Kiess, Wieland; Rothe, Ulrike (2010). "Incidence of Childhood Diabetes in Children Aged Less than 15 Years and Its Clinical and Metabolic Characteristics at the Time of Diagnosis: Data from the Childhood Diabetes Registry of Saxony, Germany". Hormone Research in Paediatrics. 74 (4): 285–91. doi:10.1159/000303141. PMID   20516654. S2CID   1313999.
  26. Tattersall RB (1974). "Mild familial diabetes with dominant inheritance". Q J Med. 43 (170): 339–357. PMID   4212169.
  27. Tattersall, R (1998). "Maturity-onset diabetes of the young: A clinical history". Diabetic Medicine. 15 (1): 11–4. doi:10.1002/(SICI)1096-9136(199801)15:1<11::AID-DIA561>3.0.CO;2-0. PMID   9472858. S2CID   31690226.
  28. American Diabetes, Association (2009). "Diagnosis and Classification of Diabetes Mellitus". Diabetes Care. 32 (Suppl 1): S62 –S67. doi:10.2337/dc09-S062. PMC   2613584 . PMID   19118289.