X-linked intellectual disability

Last updated
X-linked intellectual disability
Other namesX-linked mental retardation
Specialty Neurology, medical genetics   OOjs UI icon edit-ltr-progressive.svg

X-linked intellectual disability refers to medical disorders associated with X-linked recessive inheritance that result in intellectual disability.

Contents

As with most X-linked disorders, males are more heavily affected than females. [1] Females with one affected X chromosome and one normal X chromosome tend to have milder symptoms.

Unlike many other types of intellectual disability, the genetics of these conditions are relatively well understood. [2] [3] It has been estimated there are ~200 genes involved in this syndrome; of these ~100 have been identified. [4] Many of these genes are found on the short 'p' arm of the chromosome, and duplications at Xp11.2 are associated with the syndromic form of the condition. [5] [6]

X-linked intellectual disability accounts for ~16% of all cases of intellectual disability in males. [7]

Syndromes

Several X-linked syndromes include intellectual disability as part of the presentation. These include:

List of genes

Following is a list of genes located on the X chromosome and linked to intellectual disability. There are also several loci that have not been associated with a specific gene.

See also

Related Research Articles

<span class="mw-page-title-main">Fragile X syndrome</span> X-linked dominant genetic disorder

Fragile X syndrome (FXS) is a genetic disorder characterized by mild-to-moderate intellectual disability. The average IQ in males with FXS is under 55, while about two thirds of affected females are intellectually disabled. Physical features may include a long and narrow face, large ears, flexible fingers, and large testicles. About a third of those affected have features of autism such as problems with social interactions and delayed speech. Hyperactivity is common, and seizures occur in about 10%. Males are usually more affected than females.

<span class="mw-page-title-main">Helicase</span> Class of enzymes to unpack an organisms genes

Helicases are a class of enzymes thought to be vital to all organisms. Their main function is to unpack an organism's genetic material. Helicases are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separating two hybridized nucleic acid strands, using energy from ATP hydrolysis. There are many helicases, representing the great variety of processes in which strand separation must be catalyzed. Approximately 1% of eukaryotic genes code for helicases.

<span class="mw-page-title-main">FMR1</span> Protein-coding gene in the species Homo sapiens

FMR1 is a human gene that codes for a protein called fragile X messenger ribonucleoprotein, or FMRP. This protein, most commonly found in the brain, is essential for normal cognitive development and female reproductive function. Mutations of this gene can lead to fragile X syndrome, intellectual disability, premature ovarian failure, autism, Parkinson's disease, developmental delays and other cognitive deficits. The FMR1 premutation is associated with a wide spectrum of clinical phenotypes that affect more than two million people worldwide.

<span class="mw-page-title-main">ATR-X syndrome</span> Medical condition

Alpha-thalassemia mental retardation syndrome (ATRX), also called alpha-thalassemia X-linked intellectual disability syndrome, nondeletion type or ATR-X syndrome, is an X-linked recessive condition associated with a mutation in the ATRX gene. Males with this condition tend to be moderately intellectually disabled and have physical characteristics including coarse facial features, microcephaly, hypertelorism, a depressed nasal bridge, a tented upper lip and an everted lower lip. Mild or moderate anemia, associated with alpha-thalassemia, is part of the condition. Females with this mutated gene have no specific signs or features, but if they do, they may demonstrate skewed X chromosome inactivation.

<span class="mw-page-title-main">ATRX</span> Protein-coding gene in the species Homo sapiens

Transcriptional regulator ATRX also known as ATP-dependent helicase ATRX, X-linked helicase II, or X-linked nuclear protein (XNP) is a protein that in humans is encoded by the ATRX gene.

<span class="mw-page-title-main">FXR1</span>

Fragile X mental retardation syndrome-related protein 1 is a protein that in humans is encoded by the FXR1 gene.

<span class="mw-page-title-main">PQBP1</span> Protein-coding gene in the species Homo sapiens

Polyglutamine-binding protein 1 (PQBP1) is a protein that in humans is encoded by the PQBP1 gene.

<span class="mw-page-title-main">Sodium- and chloride-dependent creatine transporter 1</span> Protein-coding gene in the species Homo sapiens

Sodium- and chloride-dependent creatine transporter 1 is a protein that in humans is encoded by the SLC6A8 gene.

<span class="mw-page-title-main">FXR2</span> Protein-coding gene in the species Homo sapiens

Fragile X mental retardation syndrome-related protein 2 is a protein that in humans is encoded by the FXR2 gene.

<span class="mw-page-title-main">AFF2</span> Protein-coding gene in the species Homo sapiens

AF4/FMR2 family member 2 is a protein that in humans is encoded by the AFF2 gene. Mutations in AFF2 are implicated in cases of breast cancer.

<span class="mw-page-title-main">OPHN1</span> Protein-coding gene in the species Homo sapiens

Oligophrenin-1 is a protein that in humans is encoded by the OPHN1 gene.

<span class="mw-page-title-main">FTSJ1</span> Protein-coding gene in the species Homo sapiens

Putative ribosomal RNA methyltransferase 1 is an enzyme that in humans is encoded by the FTSJ1 gene.

<span class="mw-page-title-main">PHF8</span> Protein-coding gene in the species Homo sapiens

PHD finger protein 8 is a protein that in humans is encoded by the PHF8 gene.

FG syndrome (FGS) is a rare genetic syndrome caused by one or more recessive genes located on the X chromosome and causing physical anomalies and developmental delays. FG syndrome was named after the first letters of the surnames of the first patients noted with the disease. First reported by American geneticists John M. Opitz and Elisabeth G. Kaveggia in 1974, its major clinical features include intellectual disability, hyperactivity, hypotonia, and a characteristic facial appearance including macrocephaly.

<span class="mw-page-title-main">Lujan–Fryns syndrome</span> Medical condition

Lujan–Fryns syndrome (LFS) is an X-linked genetic disorder that causes mild to moderate intellectual disability and features described as Marfanoid habitus, referring to a group of physical characteristics similar to those found in Marfan syndrome. These features include a tall, thin stature and long, slender limbs. LFS is also associated with psychopathology and behavioral abnormalities, and it exhibits a number of malformations affecting the brain and heart. The disorder is inherited in an X-linked dominant manner, and is attributed to a missense mutation in the MED12 gene. There is currently no treatment or therapy for the underlying MED12 malfunction, and the exact cause of the disorder remains unclear.

<span class="mw-page-title-main">Renpenning's syndrome</span> Medical condition

Renpenning's syndrome is a neurodevelopmental disorder recognised in males that causes intellectual disability, mild growth retardation with examples in the testes and head, and a somewhat short stature. The condition only affects males, starting at birth.

<span class="mw-page-title-main">Mental retardation and microcephaly with pontine and cerebellar hypoplasia</span> Rare X-linked dominant genetic disorder

Mental retardation and microcephaly with pontine and cerebellar hypoplasia (MICPCH) – also known as mental retardation, X-linked, syndromic, Najm type (MRXSNA); X-linked intellectual deficit, Najm type; intellectual developmental disorder, X-linked, syndromic, Najm type; X-linked intellectual disability–microcephaly–pontocerebellar hypoplasia syndrome; and by variations of these terms – is a rare X-linked dominant genetic disorder of infants characterised by intellectual disability and pontocerebellar hypoplasia. It usually affects females; many males die before birth or not long after.

<span class="mw-page-title-main">MECP2 duplication syndrome</span> Medical condition

MECP2 duplication syndrome (M2DS) is a rare disease that is characterized by severe intellectual disability and impaired motor function. It is an X-linked genetic disorder caused by the overexpression of MeCP2 protein.

<span class="mw-page-title-main">Xp11.2 duplication</span>

Xp11.2 duplication is a genomic variation marked by the duplication of an X chromosome region on the short arm p at position 11.2, defined by standard karyotyping (G-banding). This gene-rich, rearrangement prone region can be further divided into three loci - Xp11.21, Xp11.22 and Xp11.23. The duplication could involve any combination of these three loci. While the length of the duplication can vary from 0.5Mb to 55 Mb, most duplications measure about 4.5Mb and typically occur in the region of 11.22-11.23. Most affected females show preferential activation of the duplicated X chromosome. Features of affected individuals vary significantly, even among members of the same family. The Xp11.2 duplication can be 'silent' - presenting no obvious symptoms in carriers - which is known from the asymptomatic parents of affected children carrying the duplication. The common symptoms include intellectual disabilities, speech delay and learning difficulties, while in rare cases, children have seizures and a recognizable brain wave pattern when assessed by EEG (electroencephalography).

AF4/FMR2 (AFF) is a family of nuclear transcriptional activators that encourage RNA elongation. There are four genes in this family, all of which reside in the nucleus of the cells. The gene family includes AFF1/AF4, AFF2/FMR2, AFF3/LAF4 and AFF4/AF5q31. Within the family, the AFF2/FMR2 is silenced in FRAXE intellectual disability; while the other three gene families will form fusion genes as a consequence of chromosome translocations with the myeloid/lymphoid or mixed lineage leukemia gene in acute lymphoblastic leukemias. While different members of the AF4/FMR2 family are known for playing various roles in cells, they all commonly participate in the regulation of splicing and transcription.

References

  1. "Fragile X Syndrome - X-linked Mental Retardation and Macroorchidism". International Birth Defect Information Systems. Retrieved 2010-12-10.
  2. Ropers HH, Hamel BC (January 2005). "X-linked mental retardation". Nature Reviews. Genetics. 6 (1): 46–57. doi:10.1038/nrg1501. PMID   15630421. S2CID   427210.
  3. Lugtenberg D, Veltman JA, van Bokhoven H (September 2007). "High-resolution genomic microarrays for X-linked mental retardation". Genetics in Medicine. 9 (9): 560–565. doi: 10.1097/GIM.0b013e318149e647 . PMID   17873643.
  4. Stevenson RE, Schwartz CE (2009). "X-linked intellectual disability: unique vulnerability of the male genome". Developmental Disabilities Research Reviews. 15 (4): 361–368. doi:10.1002/ddrr.81. PMID   20014364.
  5. "OMIM Entry - # 300705 - CHROMOSOME Xp11.22 DUPLICATION SYNDROME". omim.org. Retrieved 2018-03-09.
  6. "Microduplication Xp11.22-p11.23 syndrome | Genetic and Rare Diseases Information Center (GARD) – an NCATS Program". rarediseases.info.nih.gov. Retrieved 2018-03-09.
  7. Stevenson RE, Schwartz CE (2009). "X-linked intellectual disability: unique vulnerability of the male genome". Developmental Disabilities Research Reviews. 15 (4): 361–368. doi:10.1002/ddrr.81. PMID   20014364.
  8. Shoubridge C, Tarpey PS, Abidi F, Ramsden SL, Rujirabanjerd S, Murphy JA, et al. (June 2010). "Mutations in the guanine nucleotide exchange factor gene IQSEC2 cause nonsyndromic intellectual disability". Nature Genetics. 42 (6): 486–488. doi:10.1038/ng.588. PMC   3632837 . PMID   20473311.
  9. Abidi FE, Holinski-Feder E, Rittinger O, Kooy F, Lubs HA, Stevenson RE, Schwartz CE (June 2002). "A novel 2 bp deletion in the TM4SF2 gene is associated with MRX58". Journal of Medical Genetics. 39 (6): 430–433. doi:10.1136/jmg.39.6.430. PMC   1735161 . PMID   12070254.
  10. Tarpey PS, Stevens C, Teague J, Edkins S, O'Meara S, Avis T, et al. (December 2006). "Mutations in the gene encoding the Sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation". American Journal of Human Genetics. 79 (6): 1119–1124. doi:10.1086/510137. PMC   1698718 . PMID   17186471.
  11. "AP1S2 adaptor-related protein complex 1, sigma 2 subunit". Entrez Gene. National Center for Biotechnology Information, U.S. National Library of Medicine.
  12. Piccini M, Vitelli F, Bruttini M, Pober BR, Jonsson JJ, Villanova M, et al. (February 1998). "FACL4, a new gene encoding long-chain acyl-CoA synthetase 4, is deleted in a family with Alport syndrome, elliptocytosis, and mental retardation". Genomics. 47 (3): 350–358. doi: 10.1006/geno.1997.5104 . PMID   9480748.
  13. Franzè A, Archidiacono N, Rocchi M, Marino M, Grimaldi G (April 1991). "Isolation and expression analysis of a human zinc finger gene (ZNF41) located on the short arm of the X chromosome". Genomics. 9 (4): 728–736. doi:10.1016/0888-7543(91)90367-N. PMID   2037297.
  14. Stathakis DG, Lee D, Bryant PJ (April 1998). "DLG3, the gene encoding human neuroendocrine Dlg (NE-Dlg), is located within the 1.8-Mb dystonia-parkinsonism region at Xq13.1". Genomics. 49 (2): 310–313. doi:10.1006/geno.1998.5243. PMID   9598320.
  15. Ramser J, Winnepenninckx B, Lenski C, Errijgers V, Platzer M, Schwartz CE, et al. (September 2004). "A splice site mutation in the methyltransferase gene FTSJ1 in Xp11.23 is associated with non-syndromic mental retardation in a large Belgian family (MRX9)". Journal of Medical Genetics. 41 (9): 679–683. doi:10.1136/jmg.2004.019000. PMC   1735884 . PMID   15342698.
  16. Guy MP, Phizicky EM (January 2015). "Conservation of an intricate circuit for crucial modifications of the tRNAPhe anticodon loop in eukaryotes". RNA. 21 (1): 61–74. doi:10.1261/rna.047639.114. PMC   4274638 . PMID   25404562.
  17. Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (May 2008). "MeCP2, a key contributor to neurological disease, activates and represses transcription". Science. 320 (5880): 1224–1229. Bibcode:2008Sci...320.1224C. doi:10.1126/science.1153252. PMC   2443785 . PMID   18511691.
  18. Bienvenu T, Poirier K, Friocourt G, Bahi N, Beaumont D, Fauchereau F, et al. (April 2002). "ARX, a novel Prd-class-homeobox gene highly expressed in the telencephalon, is mutated in X-linked mental retardation". Human Molecular Genetics. 11 (8): 981–991. doi: 10.1093/hmg/11.8.981 . PMID   11971879.
  19. Jensen LR, Amende M, Gurok U, Moser B, Gimmel V, Tzschach A, et al. (February 2005). "Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation". American Journal of Human Genetics. 76 (2): 227–236. doi:10.1086/427563. PMC   1196368 . PMID   15586325.
  20. Loenarz C, Schofield CJ (March 2008). "Expanding chemical biology of 2-oxoglutarate oxygenases". Nature Chemical Biology. 4 (3): 152–156. doi:10.1038/nchembio0308-152. PMID   18277970.
  21. Loenarz C, Ge W, Coleman ML, Rose NR, Cooper CD, Klose RJ, et al. (January 2010). "PHF8, a gene associated with cleft lip/palate and mental retardation, encodes for an Nepsilon-dimethyl lysine demethylase". Human Molecular Genetics. 19 (2): 217–222. doi:10.1093/hmg/ddp480. PMC   4673897 . PMID   19843542.
  22. Stettner GM, Shoukier M, Höger C, Brockmann K, Auber B (August 2011). "Familial intellectual disability and autistic behavior caused by a small FMR2 gene deletion". American Journal of Medical Genetics. Part A. 155A (8): 2003–2007. doi:10.1002/ajmg.a.34122. PMID   21739600. S2CID   9568277.
  23. Melko M, Douguet D, Bensaid M, Zongaro S, Verheggen C, Gecz J, Bardoni B (May 2011). "Functional characterization of the AFF (AF4/FMR2) family of RNA-binding proteins: insights into the molecular pathology of FRAXE intellectual disability". Human Molecular Genetics. 20 (10): 1873–1885. doi: 10.1093/hmg/ddr069 . PMID   21330300.
  24. Cecil KM, Salomons GS, Ball WS, Wong B, Chuck G, Verhoeven NM, et al. (March 2001). "Irreversible brain creatine deficiency with elevated serum and urine creatine: a creatine transporter defect?". Annals of Neurology. 49 (3): 401–404. doi:10.1002/ana.79. PMID   11261517. S2CID   38756630.
  25. Grau C, Starkovich M, Azamian MS, Xia F, Cheung SW, Evans P, et al. (2017). "Xp11.22 deletions encompassing CENPVL1, CENPVL2, MAGED1 and GSPT2 as a cause of syndromic X-linked intellectual disability". PLOS ONE. 12 (4): e0175962. Bibcode:2017PLoSO..1275962G. doi: 10.1371/journal.pone.0175962 . PMC   5393878 . PMID   28414775.
  26. Grau C, Starkovich M, Azamian MS, Xia F, Cheung SW, Evans P, et al. (2017). "Xp11.22 deletions encompassing CENPVL1, CENPVL2, MAGED1 and GSPT2 as a cause of syndromic X-linked intellectual disability". PLOS ONE. 12 (4): e0175962. Bibcode:2017PLoSO..1275962G. doi: 10.1371/journal.pone.0175962 . PMC   5393878 . PMID   28414775.
  27. Czeschik JC, Bauer P, Buiting K, Dufke C, Guillén-Navarro E, Johnson DS, et al. (September 2013). "X-linked intellectual disability type Nascimento is a clinically distinct, probably underdiagnosed entity". Orphanet Journal of Rare Diseases. 8: 146. doi: 10.1186/1750-1172-8-146 . PMC   4015352 . PMID   24053514.