Lipid storage disorder

Last updated
Lipid storage disorder
Specialty Endocrinology   OOjs UI icon edit-ltr-progressive.svg

A lipid storage disorder (or lipidosis) is any one of a group of inherited metabolic disorders in which harmful amounts of fats or lipids accumulate in some body cells and tissues. [1] People with these disorders either do not produce enough of one of the enzymes needed to metabolize and break down lipids or, they produce enzymes that do not work properly. Over time, the buildup of fats may cause permanent cellular and tissue damage, particularly in the brain, peripheral nervous system, liver, spleen, and bone marrow.

Contents

Inside cells under normal conditions, lysosomes convert, or metabolize, lipids and proteins into smaller components to provide energy for the body.

Classification

Disorders that store this intracellular material are part of the lysosomal storage diseases family of disorders.

Sphingolipidoses

Many lipid storage disorders can be classified into the subgroup of sphingolipidoses, as they relate to sphingolipid metabolism. Members of this group include Niemann-Pick disease, Fabry disease, Krabbe disease, Gaucher disease, Tay–Sachs disease, metachromatic leukodystrophy, multiple sulfatase deficiency, and Farber disease. They are generally inherited in an autosomal recessive fashion, but Fabry disease is X-linked. Taken together, sphingolipidoses have an incidence of approximately 1 in 10,000. Enzyme replacement therapy is available mainly to treat Fabry disease and Gaucher disease and people with these types of sphingolipidoses may live well into adulthood. Generally, the other types are fatal by age 1 to 5 years for infantile forms, but progression may be mild for juvenile-onset or adult-onset forms.[ citation needed ]

Alternatively, some of the sphingolipidoses may be classified into either GM1 gangliosidoses or GM2 gangliosidoses. Tay–Sachs disease belongs to the latter.

Other

Other lipid storage disorders that generally are not classified as sphingolipidoses include fucosidosis, Schindler disease, and Wolman disease.

Genetics

Lipid storage diseases can be inherited two ways: Autosomal recessive inheritance occurs when both parents carry and pass on a copy of the faulty gene, but neither parent show signs and symptoms of the condition and is not affected by the disorder. Each child born to these parents have a 25 percent chance of inheriting both copies of the defective gene, a 50 percent chance of being a carrier, and a 25 percent chance of not inheriting either copy of the defective gene. Children of either gender may be affected by an autosomal recessive this pattern of inheritance.[ citation needed ]

X-linked recessive (or sex linked) inheritance occurs when the mother carries the affected gene on the X chromosome that has determined the child's gender and passes it to her son. Sons of carriers have a 50 percent chance of inheriting the disorder. Daughters have a 50 percent chance of inheriting the X-linked chromosome, but usually are not severely affected by the disorder. Affected men do not pass the disorder to their sons, but their daughters will be carriers for the disorder.[ citation needed ]

Diagnosis

Diagnosis of the lipid storage disorders can be achieved through the use of several tests. These tests include clinical examination, biopsy, genetic testing, molecular analysis of cells or tissues, and enzyme assays. Certain forms of this disease also can be diagnosed through urine testing, which detects the stored material. Prenatal testing also is available to determine whether the fetus will have the disease or is a carrier. [1]

Treatment

There are no specific treatments for lipid storage disorders; however, there are some highly effective enzyme replacement therapies for people with type 1 Gaucher disease and some patients with type 3 Gaucher disease. There are other treatments such as the prescription of certain drugs such as phenytoin and carbamazepine to treat pain for patients with Fabry disease. Furthermore, gene therapies and bone marrow transplantation may prove to be effective for certain lipid storage disorders. [2]

Diet restrictions do not help prevent the buildup of lipids in the tissues. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Genetic disorder</span> Health problem caused by one or more abnormalities in the genome

A genetic disorder is a health problem caused by one or more abnormalities in the genome. It can be caused by a mutation in a single gene (monogenic) or multiple genes (polygenic) or by a chromosomal abnormality. Although polygenic disorders are the most common, the term is mostly used when discussing disorders with a single genetic cause, either in a gene or chromosome. The mutation responsible can occur spontaneously before embryonic development, or it can be inherited from two parents who are carriers of a faulty gene or from a parent with the disorder. When the genetic disorder is inherited from one or both parents, it is also classified as a hereditary disease. Some disorders are caused by a mutation on the X chromosome and have X-linked inheritance. Very few disorders are inherited on the Y chromosome or mitochondrial DNA.

<span class="mw-page-title-main">Tay–Sachs disease</span> Human medical condition

Tay–Sachs disease is a genetic disorder that results in the destruction of nerve cells in the brain and spinal cord. The most common form is infantile Tay–Sachs disease, which becomes apparent around the age of three to six months of age, with the baby losing the ability to turn over, sit, or crawl. This is then followed by seizures, hearing loss, and inability to move, with death usually occurring by the age of three to five. Less commonly, the disease may occur in later childhood or adulthood. These forms tend to be less severe, but the juvenile form typically results in death by age 15.

<span class="mw-page-title-main">Gaucher's disease</span> Medical condition

Gaucher's disease or Gaucher disease (GD) is a genetic disorder in which glucocerebroside accumulates in cells and certain organs. The disorder is characterized by bruising, fatigue, anemia, low blood platelet count and enlargement of the liver and spleen, and is caused by a hereditary deficiency of the enzyme glucocerebrosidase, which acts on glucocerebroside. When the enzyme is defective, glucocerebroside accumulates, particularly in white blood cells and especially in macrophages. Glucocerebroside can collect in the spleen, liver, kidneys, lungs, brain, and bone marrow.

<span class="mw-page-title-main">Lysosomal storage disease</span> Medical condition

Lysosomal storage diseases are a group of over 70 rare inherited metabolic disorders that result from defects in lysosomal function. Lysosomes are sacs of enzymes within cells that digest large molecules and pass the fragments on to other parts of the cell for recycling. This process requires several critical enzymes. If one of these enzymes is defective due to a mutation, the large molecules accumulate within the cell, eventually killing it.

<span class="mw-page-title-main">Niemann–Pick disease</span> Medical condition

Niemann–Pick disease is a group of severe inherited metabolic disorders, in which sphingomyelin accumulates in lysosomes in cells.

<span class="mw-page-title-main">Hurler syndrome</span> Genetic disorder

Hurler syndrome, also known as mucopolysaccharidosis Type IH (MPS-IH), Hurler's disease, and formerly gargoylism, is a genetic disorder that results in the buildup of large sugar molecules called glycosaminoglycans (GAGs) in lysosomes. The inability to break down these molecules results in a wide variety of symptoms caused by damage to several different organ systems, including but not limited to the nervous system, skeletal system, eyes, and heart.

<span class="mw-page-title-main">Sex linkage</span> Sex-specific patterns of inheritance

Sex linked describes the sex-specific reading patterns of inheritance and presentation when a gene mutation (allele) is present on a sex chromosome (allosome) rather than a non-sex chromosome (autosome). In humans, these are termed X-linked recessive, X-linked dominant and Y-linked. The inheritance and presentation of all three differ depending on the sex of both the parent and the child. This makes them characteristically different from autosomal dominance and recessiveness.

<span class="mw-page-title-main">Leukodystrophy</span> Group of disorders characterised by degeneration of white matter in the brain

Leukodystrophies are a group of, usually, inherited disorders, characterized by degeneration of the white matter in the brain. The word leukodystrophy comes from the Greek roots leuko, "white", dys, "abnormal" and troph, "growth". The leukodystrophies are caused by imperfect growth or development of the glial cells which produce the myelin sheath, the fatty insulating covering around nerve fibers. Leukodystrophies may be classified as hypomyelinating or demyelinating diseases, respectively, depending on whether the damage is present before birth or occurs after. Other demyelinating diseases are usually not congenital and have a toxic or autoimmune cause.

Metachromatic leukodystrophy (MLD) is a lysosomal storage disease which is commonly listed in the family of leukodystrophies as well as among the sphingolipidoses as it affects the metabolism of sphingolipids. Leukodystrophies affect the growth and/or development of myelin, the fatty covering which acts as an insulator around nerve fibers throughout the central and peripheral nervous systems. MLD involves cerebroside sulfate accumulation. Metachromatic leukodystrophy, like most enzyme deficiencies, has an autosomal recessive inheritance pattern.

<span class="mw-page-title-main">Sandhoff disease</span> Medical condition

Sandhoff disease is a lysosomal genetic, lipid storage disorder caused by the inherited deficiency to create functional beta-hexosaminidases A and B. These catabolic enzymes are needed to degrade the neuronal membrane components, ganglioside GM2, its derivative GA2, the glycolipid globoside in visceral tissues, and some oligosaccharides. Accumulation of these metabolites leads to a progressive destruction of the central nervous system and eventually to death. The rare autosomal recessive neurodegenerative disorder is clinically almost indistinguishable from Tay–Sachs disease, another genetic disorder that disrupts beta-hexosaminidases A and S. There are three subsets of Sandhoff disease based on when first symptoms appear: classic infantile, juvenile and adult late onset.

<span class="mw-page-title-main">GM2-gangliosidosis, AB variant</span> Medical condition

GM2-gangliosidosis, AB variant is a rare, autosomal recessive metabolic disorder that causes progressive destruction of nerve cells in the brain and spinal cord. It has a similar pathology to Sandhoff disease and Tay–Sachs disease. The three diseases are classified together as the GM2 gangliosidoses, because each disease represents a distinct molecular point of failure in the activation of the same enzyme, beta-hexosaminidase. AB variant is caused by a failure in the gene that makes an enzyme cofactor for beta-hexosaminidase, called the GM2 activator.

Gangliosidosis contains different types of lipid storage disorders caused by the accumulation of lipids known as gangliosides. There are two distinct genetic causes of the disease. Both are autosomal recessive and affect males and females equally.

Farber disease is an extremely rare, progressive, autosomal recessive lysosomal storage disease caused by a deficiency of the acid ceramidase enzyme. Acid ceramidase is responsible for breaking down ceramide into sphingosine and fatty acid. When the enzyme is deficient, this leads to an accumulation of fatty material in the lysosomes of the cells, leading to the signs and symptoms of this disorder.

<span class="mw-page-title-main">Glycine encephalopathy</span> Medical condition

Glycine encephalopathy is a rare autosomal recessive disorder of glycine metabolism. After phenylketonuria, glycine encephalopathy is the second most common disorder of amino acid metabolism. The disease is caused by defects in the glycine cleavage system, an enzyme responsible for glycine catabolism. There are several forms of the disease, with varying severity of symptoms and time of onset. The symptoms are exclusively neurological in nature, and clinically this disorder is characterized by abnormally high levels of the amino acid glycine in bodily fluids and tissues, especially the cerebrospinal fluid.

<span class="mw-page-title-main">Roscoe Brady</span> American biochemist

Roscoe Owen Brady was an American biochemist.

<span class="mw-page-title-main">Sphingolipidoses</span> Medical condition

Sphingolipidoses are a class of lipid storage disorders or degenerative storage disorders caused by deficiency of an enzyme that is required for the catabolism of lipids that contain ceramide, also relating to sphingolipid metabolism. The main members of this group are Niemann–Pick disease, Fabry disease, Krabbe disease, Gaucher disease, Tay–Sachs disease and metachromatic leukodystrophy. They are generally inherited in an autosomal recessive fashion, but notably Fabry disease is X-linked recessive. Taken together, sphingolipidoses have an incidence of approximately 1 in 10,000, but substantially more in certain populations such as Ashkenazi Jews. Enzyme replacement therapy is available to treat mainly Fabry disease and Gaucher disease, and people with these types of sphingolipidoses may live well into adulthood. The other types are generally fatal by age 1 to 5 years for infantile forms, but progression may be mild for juvenile- or adult-onset forms.

<span class="mw-page-title-main">Hunter syndrome</span> Medical condition

Hunter syndrome, or mucopolysaccharidosis type II, is a rare genetic disorder in which large sugar molecules called glycosaminoglycans build up in body tissues. It is a form of lysosomal storage disease. Hunter syndrome is caused by a deficiency of the lysosomal enzyme iduronate-2-sulfatase (I2S). The lack of this enzyme causes heparan sulfate and dermatan sulfate to accumulate in all body tissues. Hunter syndrome is the only MPS syndrome to exhibit X-linked recessive inheritance.

The GM2 gangliosidoses are a group of three related genetic disorders that result from a deficiency of the enzyme beta-hexosaminidase. This enzyme catalyzes the biodegradation of fatty acid derivatives known as gangliosides. The diseases are better known by their individual names: Tay–Sachs disease, AB variant, and Sandhoff disease.

The GM1 gangliosidoses, usually shortened to GM1, are gangliosidoses caused by mutation in the GLB1 gene resulting in a deficiency of beta-galactosidase. The deficiency causes abnormal storage of acidic lipid materials in cells of the central and peripheral nervous systems, but particularly in the nerve cells, resulting in progressive neurodegeneration. GM1 is a rare lysosomal storage disorder with a prevalence of 1 to every 100,000 to 200,000 live births worldwide, although rates are higher in some regions.

Pyruvate carboxylase deficiency is an inherited disorder that causes lactic acid to accumulate in the blood. High levels of these substances can damage the body's organs and tissues, particularly in the nervous system. Pyruvate carboxylase deficiency is a rare condition, with an estimated incidence of 1 in 250,000 births worldwide. Type A of the disease appears to be much more common in some Algonkian Indian tribes in eastern Canada, while the type B disease is more present in European populations.

References

  1. 1 2 3 "Lipid Storage Diseases Fact Sheet". National Institute of Neurological Disorders and Stroke. January 13, 2015. Archived from the original on January 11, 2015. Retrieved November 28, 2005.
  2. Lipid Storage Disorders at eMedicine