Tetraspanin

Last updated
Tetraspanin family
Tetraspanin Figure.jpg
Tetraspanins have four transmembrane domains, two extracellular loops and contain a series of highly conserved amino acid residues.
Identifiers
SymbolTetraspanin
Pfam PF00335
Pfam clan CL0347
InterPro IPR000301
PROSITE PDOC00371
SCOP2 1iv5 / SCOPe / SUPFAM
TCDB 8.A.40
OPM superfamily 327
OPM protein 5tcx
CDD cd03127
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
Hypothetical model of the tetraspanin function Hypothetical model of the tetraspanin function.pdf
Hypothetical model of the tetraspanin function

Tetraspanins are a family of membrane proteins found in all multicellular eukaryotes also referred to as the transmembrane 4 superfamily (TM4SF) proteins. These proteins have four transmembrane alpha-helices and two extracellular domains, one short (called the small extracellular domain or loop, SED/SEL or EC1) and one longer, typically 100 amino acid residues (the large extracellular domain/loop, LED/LEL or EC2). Although several protein families have four transmembrane alpha-helices, tetraspanins are defined by conserved amino acid sequences including four or more cysteine residues in the EC2 domain, with two in a highly conserved 'CCG' motif. Tetraspanins are often thought to act as scaffolding proteins, anchoring multiple proteins to one area of the cell membrane. [1]

Contents

Tetraspanins are highly conserved between species. Some tetraspanins can have N-linked glycosylations on the long extracellular loop (LEL, EC2) and palmitoylations at a CXXC motif in their transmembrane region. [2]

There are 34 tetraspanins in mammals, 33 of which have also been identified in humans. Tetraspanins display numerous properties that indicate their physiological importance in cell adhesion, motility, activation, and proliferation, as well as their contribution to pathological conditions such as metastasis or viral infection.

A role for tetraspanins in platelets was demonstrated by the bleeding phenotypes of CD151- and TSSC6-deficient mice, which exhibit impaired "outside-in" signalling through αIIbβ3, the major platelet integrin. it is hypothesized that tetraspanins interact with and regulate other platelet receptors. [3]

List of human tetraspanins

ProteinGeneAliases
TSPAN1 TSPAN1 TSP-1
TSPAN2 TSPAN2 TSP-2
TSPAN3 TSPAN3 TSP-3
TSPAN4 TSPAN4 TSP-4, NAG-2
TSPAN5 TSPAN5 TSP-5
TSPAN6 TSPAN6 TSP-6
TSPAN7 TSPAN7 CD231/TALLA-1/A15
TSPAN8 TSPAN8 CO-029
TSPAN9 TSPAN9 NET-5
TSPAN10 TSPAN10 OCULOSPANIN
TSPAN11 TSPAN11 CD151-like
TSPAN12 TSPAN12 NET-2
TSPAN13 TSPAN13 NET-6
TSPAN14 TSPAN14
TSPAN15 TSPAN15 NET-7
TSPAN16 TSPAN16 TM4-B
TSPAN17 TSPAN17
TSPAN18 TSPAN18
TSPAN19 TSPAN19
TSPAN20 UPK1B UP1b, UPK1B
TSPAN21 TSPAN21 UP1a, UPK1A
TSPAN22 PRPH2 RDS, PRPH2
TSPAN23 TSPAN23 ROM1
TSPAN24 CD151 CD151
TSPAN25 CD53 CD53
TSPAN26 CD37 CD37
TSPAN27 CD82 CD82
TSPAN28 CD81 CD81
TSPAN29 CD9 CD9
TSPAN30 CD63 CD63
TSPAN31 TSPAN31 SAS
TSPAN32 TSPAN32 TSSC6
TSPAN33 TSPAN33

See also

Relevance to parasite vaccines

The schistosome worms make two tetraspanins: TSP-1 and TSP-2. TSP-2 antibodies are found in some people who seem to have immunity to schistosome infection (Schistosomiasis). [4]

Related Research Articles

<span class="mw-page-title-main">Integrin</span> Instance of a defined set in Homo sapiens with Reactome ID (R-HSA-374573)

Integrins are transmembrane receptors that help cell–cell and cell–extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, organization of the intracellular cytoskeleton, and movement of new receptors to the cell membrane. The presence of integrins allows rapid and flexible responses to events at the cell surface.

<span class="mw-page-title-main">Protein kinase</span> Enzyme that adds phosphate groups to other proteins

A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a functional change of the target protein (substrate) by changing enzyme activity, cellular location, or association with other proteins. The human genome contains about 500 protein kinase genes and they constitute about 2% of all human genes. There are two main types of protein kinase. The great majority are serine/threonine kinases, which phosphorylate the hydroxyl groups of serines and threonines in their targets. Most of the others are tyrosine kinases, although additional types exist. Protein kinases are also found in bacteria and plants. Up to 30% of all human proteins may be modified by kinase activity, and kinases are known to regulate the majority of cellular pathways, especially those involved in signal transduction.

A transmembrane domain (TMD) is a membrane-spanning protein domain. TMDs may consist of one or several alpha-helices or a transmembrane beta barrel. Because the interior of the lipid bilayer is hydrophobic, the amino acid residues in TMDs are often hydrophobic, although proteins such as membrane pumps and ion channels can contain polar residues. TMDs vary greatly in size and hydrophobicity; they may adopt organelle-specific properties.

<span class="mw-page-title-main">Ligand-gated ion channel</span> Type of ion channel transmembrane protein

Ligand-gated ion channels (LICs, LGIC), also commonly referred to as ionotropic receptors, are a group of transmembrane ion-channel proteins which open to allow ions such as Na+, K+, Ca2+, and/or Cl to pass through the membrane in response to the binding of a chemical messenger (i.e. a ligand), such as a neurotransmitter.

Cell adhesion molecules (CAMs) are a subset of cell surface proteins that are involved in the binding of cells with other cells or with the extracellular matrix (ECM), in a process called cell adhesion. In essence, CAMs help cells stick to each other and to their surroundings. CAMs are crucial components in maintaining tissue structure and function. In fully developed animals, these molecules play an integral role in generating force and movement and consequently ensuring that organs are able to execute their functions normally. In addition to serving as "molecular glue", CAMs play important roles in the cellular mechanisms of growth, contact inhibition, and apoptosis. Aberrant expression of CAMs may result in a wide range of pathologies, ranging from frostbite to cancer.

<span class="mw-page-title-main">P2X purinoreceptor</span> Group of ion channel proteins

The P2X receptors, also ATP-gated P2X receptor cation channel family, is a protein family that consists of cation-permeable ligand-gated ion channels that open in response to the binding of extracellular adenosine 5'-triphosphate (ATP). They belong to a larger family of receptors known as the ENaC/P2X superfamily. ENaC and P2X receptors have similar 3-D structures and are homologous. P2X receptors are present in a diverse array of organisms including humans, mouse, rat, rabbit, chicken, zebrafish, bullfrog, fluke, and amoeba.

The Cys-loop ligand-gated ion channel superfamily is composed of nicotinic acetylcholine, GABAA, GABAA, glycine, 5-HT3, and zinc-activated (ZAC) receptors. These receptors are composed of five protein subunits which form a pentameric arrangement around a central pore. There are usually 2 alpha subunits and 3 other beta, gamma, or delta subunits (some consist of 5 alpha subunits). The name of the family refers to a characteristic loop formed by 13 highly conserved amino acids between two cysteine (Cys) residues, which form a disulfide bond near the N-terminal extracellular domain.

<span class="mw-page-title-main">CD9</span> Human protein-encoding gene

CD9 is a gene encoding a protein that is a member of the transmembrane 4 superfamily also known as the tetraspanin family. It is a cell surface glycoprotein that consists of four transmembrane regions and has two extracellular loops that contain disulfide bonds which are conserved throughout the tetraspanin family. Also containing distinct palmitoylation sites that allows CD9 to interact with lipids and other proteins.

<span class="mw-page-title-main">CD63</span> Mammalian protein found in humans

CD63 antigen is a protein that, in humans, is encoded by the CD63 gene. CD63 is mainly associated with membranes of intracellular vesicles, although cell surface expression may be induced.

<span class="mw-page-title-main">CD151</span> Protein-coding gene in humans

CD151 molecule, also known as CD151, is a human gene.

Platelet membrane glycoproteins are surface glycoproteins found on platelets (thrombocytes) which play a key role in hemostasis. When the blood vessel wall is damaged, platelet membrane glycoproteins interact with the extracellular matrix.

<span class="mw-page-title-main">CD81</span> Mammalian protein found in humans

CD81 molecule, also known as CD81, is a protein which in humans is encoded by the CD81 gene. It is also known as 26 kDa cell surface protein, TAPA-1, and Tetraspanin-28 (Tspan-28).

<span class="mw-page-title-main">CD47</span> Protein-coding gene in humans

CD47 also known as integrin associated protein (IAP) is a transmembrane protein that in humans is encoded by the CD47 gene. CD47 belongs to the immunoglobulin superfamily and partners with membrane integrins and also binds the ligands thrombospondin-1 (TSP-1) and signal-regulatory protein alpha (SIRPα). CD-47 acts as a don't eat me signal to macrophages of the immune system which has made it a potential therapeutic target in some cancers, and more recently, for the treatment of pulmonary fibrosis.

<span class="mw-page-title-main">TSPAN4</span> Protein-coding gene in humans

Tetraspanin-4 is a protein that in humans is encoded by the TSPAN4 gene.

<span class="mw-page-title-main">Cell surface receptor</span> Class of ligand activated receptors localized in surface of plama cell membrane

Cell surface receptors are receptors that are embedded in the plasma membrane of cells. They act in cell signaling by receiving extracellular molecules. They are specialized integral membrane proteins that allow communication between the cell and the extracellular space. The extracellular molecules may be hormones, neurotransmitters, cytokines, growth factors, cell adhesion molecules, or nutrients; they react with the receptor to induce changes in the metabolism and activity of a cell. In the process of signal transduction, ligand binding affects a cascading chemical change through the cell membrane.

SNED1 is an extracellular matrix (ECM) protein expressed at low levels in a wide range of tissues. The gene encoding SNED1 is located in the human chromosome 2 at locus q37.3. The corresponding mRNA isolated from the spleen and is 6834bp in length, and the corresponding protein is 1413 amino-acid long. The mouse ortholog of SNED1 was cloned in 2004 from the embryonic kidney by Leimester et al. SNED1 present domains characteristic of ECM proteins, including an amino-terminal NIDO domain, several calcium binding EGF-like domains (EGF_CA), a Sushi domain also known as complement control protein (CCP) domain, and three type III fibronectin (FN3) domains in the carboxy-terminal region.

The GPIb-IX-V complex is a profuse membrane receptor complex originating in megakaryocytes and exclusively functional on the surface of platelets. It primarily functions to mediate the first critical step in platelet adhesion, by facilitating binding to von Willebrand factor (VWF) on damaged sub-endothelium under conditions of high fluid shear stress. Although the primary ligand for the GPIb-V-IX receptor is VWF, it can also bind to a number of other ligands in the circulation such as thrombin, P-selectin, factor XI, factor XII, high molecular weight kininogen as well as bacteria. GPIb-IX-V offers a critical role in thrombosis, metastasis, and the life cycle of platelets, and is implicated in a number of thrombotic pathological processes such as stroke or myocardial infarction.

<span class="mw-page-title-main">Collagen, type XXIII, alpha 1</span> Mammalian protein found in humans

Collagen α-1 (XXIII) chain is a protein encoded by COL23A1 gene, which is located on chromosome 5q35 in humans, and on chromosome 11B1+2 in mice. The location of this gene was discovered by genomic sequence analysis.

<span class="mw-page-title-main">Bacterial Leucine Transporter</span> Bundled twelve alpha helix protein

Bacterial Leucine Transporter (LeuT) is a bundled twelve alpha helix protein which belongs to the family of transporters that shuttle amino acids in and out of bacterial cells. Specialized in small hydrophobic amino acids such as leucine and alanine, this transporter is powered by the gradient of sodium ions that is normally maintained by healthy cells across their membranes. LeuT acts as a symporter, which means that it links the passage of a sodium ion across the cell membrane with the transport of the amino acid in the same direction. It was first crystallized to understand the inner molecular mechanisms of antidepressant's work since it has a close resemblance with the human neurotransmitter transporters that these drugs block, thus inhibiting the reuptake of chemical messengers across the cell membrane of nerve axons and glial cells.

Tight junction proteins are molecules situated at the tight junctions of epithelial, endothelial and myelinated cells. This multiprotein junctional complex has a regulatory function in passage of ions, water and solutes through the paracellular pathway. It can also coordinate the motion of lipids and proteins between the apical and basolateral surfaces of the plasma membrane. Thereby tight junction conducts signaling molecules, that influence the differentiation, proliferation and polarity of cells. So tight junction plays a key role in maintenance of osmotic balance and trans-cellular transport of tissue specific molecules. Nowadays is known more than 40 different proteins, that are involved in these selective TJ channels.

References

  1. Hemler ME (2005). "Tetraspanin functions and associated microdomains". Nat. Rev. Mol. Cell Biol. 6 (10): 801–11. doi:10.1038/nrm1736. PMID   16314869. S2CID   5906694.
  2. Wright MD, Tomlinson MG (1994). "The ins and outs of the transmembrane 4 superfamily". Immunol. Today. 15 (12): 588–94. doi:10.1016/0167-5699(94)90222-4. PMID   7531445.
  3. Goschnick MW, Lau LM, Wee JL, Liu YS, Hogarth PM, Robb LM, Hickey MJ, Wright MD, Jackson DE (2006). "Impaired "outside-in" integrin alphaIIbbeta3 signaling and thrombus stability in TSSC6-deficient mice". Blood. 108 (6): 1911–8. doi: 10.1182/blood-2006-02-004267 . PMID   16720835.
  4. Scientific American May 2008, referring to McManus & Loukas Clinical Microbiology reviews V21,N1,p225-242 (Jan 2008)