Presenilin-2

Last updated
PSEN2
Identifiers
Aliases PSEN2 , AD3L, AD4, CMD1V, PS2, STM2, presenilin 2
External IDs OMIM: 600759; MGI: 109284; HomoloGene: 386; GeneCards: PSEN2; OMA:PSEN2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000447
NM_012486

NM_001128605
NM_011183

RefSeq (protein)

NP_000438
NP_036618

NP_001122077
NP_035313

Location (UCSC) Chr 1: 226.87 – 226.93 Mb Chr 1: 180.05 – 180.09 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Presenilin-2 is a protein that (in humans) is encoded by the PSEN2 gene. [5]

Contents

Function

Alzheimer's disease (AD) patients with an inherited form of the disease carry mutations in the presenilin proteins (PSEN1; PSEN2) or the amyloid precursor protein (APP). These disease-linked mutations result in increased production of the longer form of amyloid-beta (main component of amyloid deposits found in AD brains). Presenilins are postulated to regulate APP processing through their effects on gamma-secretase, an enzyme that cleaves APP. Also, it is thought that the presenilins are involved in the cleavage of the Notch receptor, such that they either directly regulate gamma-secretase activity or themselves are protease enzymes. Two alternative transcripts of PSEN2 have been identified. [6]

In melanocytic cells PSEN2 gene expression may be regulated by MITF. [7]

Interactions

PSEN2 has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">Gamma secretase</span> Type of protein

Gamma secretase is a multi-subunit protease complex, an integral membrane protein, that cleaves single-pass transmembrane proteins at residues within the transmembrane domain. Proteases of this type are known as intramembrane proteases. The most well-known substrate of gamma secretase is amyloid precursor protein, a large integral membrane protein that, when cleaved by both gamma and beta secretase, produces a short 37-43 amino acid peptide called amyloid beta whose abnormally folded fibrillar form is the primary component of amyloid plaques found in the brains of Alzheimer's disease patients. Gamma secretase is also critical in the related processing of several other type I integral membrane proteins, such as Notch, ErbB4, E-cadherin, N-cadherin, ephrin-B2, or CD44.

<span class="mw-page-title-main">Presenilin</span>

Presenilins are a family of related multi-pass transmembrane proteins which constitute the catalytic subunits of the gamma-secretase intramembrane protease protein complex. They were first identified in screens for mutations causing early onset forms of familial Alzheimer's disease by Peter St George-Hyslop. Vertebrates have two presenilin genes, called PSEN1 that codes for presenilin 1 (PS-1) and PSEN2 that codes for presenilin 2 (PS-2). Both genes show conservation between species, with little difference between rat and human presenilins. The nematode worm C. elegans has two genes that resemble the presenilins and appear to be functionally similar, sel-12 and hop-1.

<span class="mw-page-title-main">Nicastrin</span>

Nicastrin, also known as NCSTN, is a protein that in humans is encoded by the NCSTN gene.

APH-1 is a protein gene product originally identified in the Notch signaling pathway in Caenorhabditis elegans as a regulator of the cell-surface localization of nicastrin. APH-1 homologs in other organisms, including humans, have since been identified as components of the gamma secretase complex along with the catalytic subunit presenilin and the regulatory subunits nicastrin and PEN-2. The gamma-secretase complex is a multimeric protease responsible for the intramembrane proteolysis of transmembrane proteins such as the Notch protein and amyloid precursor protein (APP). Gamma-secretase cleavage of APP is one of two proteolytic steps required to generate the peptide known as amyloid beta, whose misfolded form is implicated in the causation of Alzheimer's disease. All of the components of the gamma-secretase complex undergo extensive post-translational modification, especially proteolytic activation; APH-1 and PEN-2 are regarded as regulators of the maturation process of the catalytic component presenilin. APH-1 contains a conserved alpha helix interaction motif glycine-X-X-X-glycine (GXXXG) that is essential to both assembly of the gamma secretase complex and to the maturation of the components.

<span class="mw-page-title-main">Presenilin-1</span> Protein-coding gene in the species Homo sapiens

Presenilin-1(PS-1) is a presenilin protein that in humans is encoded by the PSEN1 gene. Presenilin-1 is one of the four core proteins in the gamma secretase complex, which is considered to play an important role in generation of amyloid beta (Aβ) from amyloid-beta precursor protein (APP). Accumulation of amyloid beta is associated with the onset of Alzheimer's disease.

<span class="mw-page-title-main">Notch 2</span> Protein-coding gene in the species Homo sapiens

Neurogenic locus notch homolog protein 2 is a protein that in humans is encoded by the NOTCH2 gene.

<span class="mw-page-title-main">APBB1</span> Protein-coding gene in the species Homo sapiens

Amyloid beta A4 precursor protein-binding family B member 1 is a protein that in humans is encoded by the APBB1 gene.

<span class="mw-page-title-main">Laminin subunit alpha-1</span> Protein-coding gene in the species Homo sapiens

Laminin subunit alpha-1 is a protein that in humans is encoded by the LAMA1 gene.

<span class="mw-page-title-main">Calsenilin</span> Protein found in humans

Calsenilin is a protein that in humans is encoded by the KCNIP3 gene.

<span class="mw-page-title-main">APBA1</span> Protein-coding gene in the species Homo sapiens

Amyloid beta A4 precursor protein-binding family A member 1 is a protein that in humans is encoded by the APBA1 gene.

<span class="mw-page-title-main">APLP1</span> Protein-coding gene in the species Homo sapiens

Amyloid-like protein 1, also known as APLP1, is a protein that in humans is encoded by the APLP1 gene. APLP1 along with APLP2 are important modulators of glucose and insulin homeostasis.

<span class="mw-page-title-main">FLNB</span> Protein-coding gene in the species Homo sapiens

Filamin B, beta (FLNB), also known as Filamin B, beta , is a cytoplasmic protein which in humans is encoded by the FLNB gene.

<span class="mw-page-title-main">APBA2</span> Protein-coding gene in the species Homo sapiens

Amyloid beta A4 precursor protein-binding family A member 2 is a protein that in humans is encoded by the APBA2 gene.

<span class="mw-page-title-main">Plakophilin-4</span> Protein-coding gene in the species Homo sapiens

Plakophilin-4 is a protein that in humans is encoded by the PKP4 gene.

<span class="mw-page-title-main">ITM2B</span> Protein-coding gene in the species Homo sapiens

Integral membrane protein 2B is a protein that in humans is encoded by the ITM2B gene.

<span class="mw-page-title-main">APBB2</span> Protein-coding gene in the species Homo sapiens

Amyloid beta A4 precursor protein-binding family B member 2 is a protein that in humans is encoded by the APBB2 gene.

<span class="mw-page-title-main">APBB3</span> Protein-coding gene in the species Homo sapiens

Amyloid beta A4 precursor protein-binding family B member 3 is a protein that in humans is encoded by the APBB3 gene.

<span class="mw-page-title-main">Dedicator of cytokinesis protein 3</span> Protein found in humans

Dedicator of cytokinesis protein 3 (Dock3), also known as MOCA and PBP, is a large protein encoded in the human by the DOCK3 gene, involved in intracellular signalling networks. It is a member of the DOCK-B subfamily of the DOCK family of guanine nucleotide exchange factors (GEFs) which function as activators of small G-proteins. Dock3 specifically activates the small G protein Rac.

<span class="mw-page-title-main">Collagen, type XXV, alpha 1</span> Protein found in humans

Collagen alpha-1(XXV) chain is a protein that in humans is encoded by the COL25A1 gene.

Early-onset Alzheimer's disease (EOAD), also called younger-onset Alzheimer's disease (YOAD), is Alzheimer's disease diagnosed before the age of 65. It is an uncommon form of Alzheimer's, accounting for only 5–10% of all Alzheimer's cases. About 60% have a positive family history of Alzheimer's and 13% of them are inherited in an autosomal dominant manner. Most cases of early-onset Alzheimer's share the same traits as the "late-onset" form and are not caused by known genetic mutations. Little is understood about how it starts.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000143801 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000010609 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K (September 1995). "Candidate gene for the chromosome 1 familial Alzheimer's disease locus". Science. 269 (5226): 973–977. Bibcode:1995Sci...269..973L. doi:10.1126/science.7638622. PMID   7638622. S2CID   27296868.
  6. "Entrez Gene: PSEN2 presenilin 2 (Alzheimer disease 4)".
  7. Hoek KS, Schlegel NC, Eichhoff OM, Widmer DS, Praetorius C, Einarsson SO, Valgeirsdottir S, Bergsteinsdottir K, Schepsky A, Dummer R, Steingrimsson E (2008). "Novel MITF targets identified using a two-step DNA microarray strategy". Pigment Cell Melanoma Res. 21 (6): 665–676. doi: 10.1111/j.1755-148X.2008.00505.x . PMID   19067971.
  8. Passer BJ, Pellegrini L, Vito P, Ganjei JK, D'Adamio L (August 1999). "Interaction of Alzheimer's presenilin-1 and presenilin-2 with Bcl-X(L). A potential role in modulating the threshold of cell death". J. Biol. Chem. 274 (34): 24007–13. doi: 10.1074/jbc.274.34.24007 . PMID   10446169.
  9. Shinozaki K, Maruyama K, Kume H, Tomita T, Saido TC, Iwatsubo T, Obata K (May 1998). "The presenilin 2 loop domain interacts with the mu-calpain C-terminal region". Int. J. Mol. Med. 1 (5): 797–9. doi:10.3892/ijmm.1.5.797. PMID   9852298.
  10. Stabler SM, Ostrowski LL, Janicki SM, Monteiro MJ (June 1999). "A myristoylated calcium-binding protein that preferentially interacts with the Alzheimer's disease presenilin 2 protein". J. Cell Biol. 145 (6): 1277–92. doi:10.1083/jcb.145.6.1277. PMC   2133148 . PMID   10366599.
  11. Buxbaum JD, Choi EK, Luo Y, Lilliehook C, Crowley AC, Merriam DE, Wasco W (October 1998). "Calsenilin: a calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment". Nat. Med. 4 (10): 1177–81. doi:10.1038/2673. PMID   9771752. S2CID   10799492.
  12. Choi EK, Zaidi NF, Miller JS, Crowley AC, Merriam DE, Lilliehook C, Buxbaum JD, Wasco W (June 2001). "Calsenilin is a substrate for caspase-3 that preferentially interacts with the familial Alzheimer's disease-associated C-terminal fragment of presenilin 2". J. Biol. Chem. 276 (22): 19197–204. doi: 10.1074/jbc.M008597200 . PMID   11278424.
  13. Tanahashi H, Tabira T (September 2000). "Alzheimer's disease-associated presenilin 2 interacts with DRAL, an LIM-domain protein". Hum. Mol. Genet. 9 (15): 2281–9. doi: 10.1093/oxfordjournals.hmg.a018919 . PMID   11001931.
  14. Zhang W, Han SW, McKeel DW, Goate A, Wu JY (February 1998). "Interaction of presenilins with the filamin family of actin-binding proteins". J. Neurosci. 18 (3): 914–22. doi:10.1523/JNEUROSCI.18-03-00914.1998. PMC   2042137 . PMID   9437013.
  15. Morohashi Y, Hatano N, Ohya S, Takikawa R, Watabiki T, Takasugi N, Imaizumi Y, Tomita T, Iwatsubo T (April 2002). "Molecular cloning and characterization of CALP/KChIP4, a novel EF-hand protein interacting with presenilin 2 and voltage-gated potassium channel subunit Kv4". J. Biol. Chem. 277 (17): 14965–75. doi: 10.1074/jbc.M200897200 . PMID   11847232.
  16. Lee SF, Shah S, Li H, Yu C, Han W, Yu G (November 2002). "Mammalian APH-1 interacts with presenilin and nicastrin and is required for intramembrane proteolysis of amyloid-beta precursor protein and Notch". J. Biol. Chem. 277 (47): 45013–9. doi: 10.1074/jbc.M208164200 . PMID   12297508.
  17. Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, Song YQ, Rogaeva E, Chen F, Kawarai T, Supala A, Levesque L, Yu H, Yang DS, Holmes E, Milman P, Liang Y, Zhang DM, Xu DH, Sato C, Rogaev E, Smith M, Janus C, Zhang Y, Aebersold R, Farrer LS, Sorbi S, Bruni A, Fraser P, St George-Hyslop P (September 2000). "Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing". Nature. 407 (6800): 48–54. Bibcode:2000Natur.407...48Y. doi:10.1038/35024009. PMID   10993067. S2CID   4339220.
  18. Mah AL, Perry G, Smith MA, Monteiro MJ (November 2000). "Identification of ubiquilin, a novel presenilin interactor that increases presenilin protein accumulation". J. Cell Biol. 151 (4): 847–62. doi:10.1083/jcb.151.4.847. PMC   2169435 . PMID   11076969.

Further reading