Peripherin 2

Last updated
PRPH2
Identifiers
Aliases PRPH2 , AOFMD, AVMD, CACD2, DS, PRPH, RDS, RP7, TSPAN22, rd2, MDBS1, Peripherin 2, peripherin 2 (retinal degeneration, slow)
External IDs OMIM: 179605 MGI: 102791 HomoloGene: 273 GeneCards: PRPH2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000322

NM_008938

RefSeq (protein)

NP_000313

NP_032964

Location (UCSC) Chr 6: 42.7 – 42.72 Mb Chr 17: 47.22 – 47.24 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Peripherin-2 is a protein, that in humans is encoded by the PRPH2 gene. [5] [6] Peripherin-2 is found in the rod and cone cells of the retina of the eye. Defects in this protein result in one form of retinitis pigmentosa, an incurable blindness.

Contents

Mutations in the PRPH2 gene are associated with Vitelliform macular dystrophy.

Function

The protein encoded by this gene is a member of the transmembrane 4 superfamily, also known as the tetraspanin family. Most of these members are cell-surface proteins that are characterized by the presence of four transmembrane helices. Tetraspanins mediate signal transduction events that play a role in the regulation of cell development, activation, growth and motility.

Peripherin 2 (sometimes referred to as peripherin/RDS or simply RDS) is a cell surface glycoprotein found in the outer segment of both rod and cone photoreceptor cells. It is located in the rim regions of the flattened disks that contain rhodopsin, which is the protein that is responsible for initiation of visual phototransduction upon reception of light. Peripherin 2 may function as an adhesion molecule involved in stabilization and compaction of outer segment disks or in the maintenance of the curvature of the rim. This protein is essential for disk morphogenesis. [6]

Clinical significance

Defects in this gene are associated with both central and peripheral retinal degenerations. Some of the various phenotypically different disorders are autosomal dominant retinitis pigmentosa, progressive macular degeneration, macular dystrophy and retinitis pigmentosa digenic. [6]

Related Research Articles

<span class="mw-page-title-main">Rhodopsin</span> Light-sensitive receptor protein

Rhodopsin, also known as visual purple, is a protein encoded by the RHO gene and a G-protein-coupled receptor (GPCR). It is the opsin of the rod cells in the retina and a light-sensitive receptor protein that triggers visual phototransduction in rods. Rhodopsin mediates dim light vision and thus is extremely sensitive to light. When rhodopsin is exposed to light, it immediately photobleaches. In humans, it is regenerated fully in about 30 minutes, after which the rods are more sensitive. Defects in the rhodopsin gene cause eye diseases such as retinitis pigmentosa and congenital stationary night blindness.

<span class="mw-page-title-main">Retinitis pigmentosa</span> Gradual retinal degeneration leading to progressive sight loss

Retinitis pigmentosa (RP) is a genetic disorder of the eyes that causes loss of vision. Symptoms include trouble seeing at night and decreasing peripheral vision. As peripheral vision worsens, people may experience "tunnel vision". Complete blindness is uncommon. Onset of symptoms is generally gradual and often begins in childhood.

<span class="mw-page-title-main">Vitelliform macular dystrophy</span> Medical condition

Vitelliform macular dystrophy is an irregular autosomal dominant eye disorder which can cause progressive vision loss. This disorder affects the retina, specifically cells in a small area near the center of the retina called the macula. The macula is responsible for sharp central vision, which is needed for detailed tasks such as reading, driving, and recognizing faces. The condition is characterized by yellow, slightly elevated, round structures similar to the yolk of an egg.

<span class="mw-page-title-main">Photoreceptor cell-specific nuclear receptor</span> Protein-coding gene in the species Homo sapiens

The photoreceptor cell-specific nuclear receptor (PNR), also known as NR2E3, is a protein that in humans is encoded by the NR2E3 gene. PNR is a member of the nuclear receptor super family of intracellular transcription factors.

<span class="mw-page-title-main">Retinitis pigmentosa GTPase regulator</span> Protein-coding gene in the species Homo sapiens

X-linked retinitis pigmentosa GTPase regulator is a GTPase-binding protein that in humans is encoded by the RPGR gene. The gene is located on the X-chromosome and is commonly associated with X-linked retinitis pigmentosa (XLRP). In photoreceptor cells, RPGR is localized in the connecting cilium which connects the protein-synthesizing inner segment to the photosensitive outer segment and is involved in the modulation of cargo trafficked between the two segments.

<span class="mw-page-title-main">ABCA4</span> Mammalian protein found in Homo sapiens

ATP-binding cassette, sub-family A (ABC1), member 4, also known as ABCA4 or ABCR, is a protein which in humans is encoded by the ABCA4 gene.

<span class="mw-page-title-main">Bestrophin 1</span> Protein-coding gene in the species Homo sapiens

Bestrophin-1 (Best1) is a protein that, in humans, is encoded by the BEST1 gene.

<span class="mw-page-title-main">PRPF31</span> Protein-coding gene in the species Homo sapiens

PRP31 pre-mRNA processing factor 31 homolog , also known as PRPF31, is a protein which in humans is encoded by the PRPF31 gene.

<i>CRX</i> (gene) Protein-coding gene in the species Homo sapiens

Cone-rod homeobox protein is a protein that in humans is encoded by the CRX gene.

<span class="mw-page-title-main">PDE6B</span> Protein-coding gene in the species Homo sapiens

Rod cGMP-specific 3',5'-cyclic phosphodiesterase subunit beta is the beta subunit of the protein complex PDE6 that is encoded by the PDE6B gene. PDE6 is crucial in transmission and amplification of visual signal. The existence of this beta subunit is essential for normal PDE6 functioning. Mutations in this subunit are responsible for retinal degeneration such as retinitis pigmentosa or congenital stationary night blindness.

<span class="mw-page-title-main">CRB1</span> Protein-coding gene in the species Homo sapiens

Crumbs homolog 1 is a protein that in humans is encoded by the CRB1 gene.

<span class="mw-page-title-main">ELOVL4</span> Protein-coding gene in the species Homo sapiens

Elongation of very long chain fatty acids protein 4 is a protein that in humans is encoded by the ELOVL4 gene.

<span class="mw-page-title-main">TULP1</span> Protein-coding gene in the species Homo sapiens

Tubby-related protein 1 is a protein that in humans is encoded by the TULP1 gene.

<span class="mw-page-title-main">ROM1</span> Protein-coding gene in the species Homo sapiens

Rod outer segment membrane protein 1 is a protein that in humans is encoded by the ROM1 gene.

<span class="mw-page-title-main">RP1</span> Protein-coding gene in humans

Oxygen-regulated protein 1 also known as retinitis pigmentosa 1 protein (RP1) is a protein that in humans is encoded by the RP1 gene.

<span class="mw-page-title-main">CNGB1</span> Protein-coding gene in the species Homo sapiens

Cyclic nucleotide gated channel beta 1, also known as CNGB1, is a human gene encoding an ion channel protein.

<span class="mw-page-title-main">FSCN2</span> Protein-coding gene in the species Homo sapiens

Fascin-2 is a protein that in humans is encoded by the FSCN2 gene.

<span class="mw-page-title-main">Retinal degeneration (rhodopsin mutation)</span> Retinopathy

Retinal degeneration is a retinopathy which consists in the deterioration of the retina caused by the progressive death of its cells. There are several reasons for retinal degeneration, including artery or vein occlusion, diabetic retinopathy, R.L.F./R.O.P., or disease. These may present in many different ways such as impaired vision, night blindness, retinal detachment, light sensitivity, tunnel vision, and loss of peripheral vision to total loss of vision. Of the retinal degenerative diseases retinitis pigmentosa (RP) is a very important example.

Retinal gene therapy holds a promise in treating different forms of non-inherited and inherited blindness.

Occult macular dystrophy (OMD) is a rare inherited degradation of the retina, characterized by progressive loss of function in the most sensitive part of the central retina (macula), the location of the highest concentration of light-sensitive cells (photoreceptors) but presenting no visible abnormality. "Occult" refers to the degradation in the fundus being difficult to discern. The disorder is called "dystrophy" instead of "degradation" to distinguish its genetic origin from other causes, such as age. OMD was first reported by Y. Miyake et al. in 1989.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000112619 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000023978 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Farrar GJ, Kenna P, Jordan SA, Kumar-Singh R, Humphries MM, Sharp EM, Sheils DM, Humphries P (Jan 1992). "A three-base-pair deletion in the peripherin-RDS gene in one form of retinitis pigmentosa". Nature. 354 (6353): 478–480. doi:10.1038/354478a0. PMID   1749427. S2CID   4366345.
  6. 1 2 3 "Entrez Gene: PRPH2 peripherin 2 (retinal degeneration, slow)".

Further reading