XIAP

Last updated
XIAP
Protein BIRC4 PDB 1c9q.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases XIAP , API3, BIRC4, IAP-3, ILP1, MIHA, XLP2, hIAP-3, hIAP3, X-linked inhibitor of apoptosis
External IDs OMIM: 300079 MGI: 107572 HomoloGene: 901 GeneCards: XIAP
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001167
NM_001204401

NM_001301639
NM_001301641
NM_009688

RefSeq (protein)

NP_001158
NP_001191330
NP_001365519
NP_001365520
NP_001365521

NP_001288568
NP_001288570
NP_033818

Location (UCSC)n/a Chr X: 41.15 – 41.2 Mb
PubMed search [2] [3]
Wikidata
View/Edit Human View/Edit Mouse

X-linked inhibitor of apoptosis protein (XIAP), also known as inhibitor of apoptosis protein 3 (IAP3) and baculoviral IAP repeat-containing protein 4 (BIRC4), is a protein that stops apoptotic cell death. In humans, this protein (XIAP) is produced by a gene named XIAP gene located on the X chromosome. [4] [5]

XIAP is a member of the inhibitor of apoptosis family of proteins (IAP). IAPs were initially identified in baculoviruses, but XIAP is one of the homologous proteins found in mammals. [6] It is so called because it was first discovered by a 273 base pair site on the X chromosome. [4] The protein is also called human IAP-like Protein (hILP), because it is not as well conserved as the human IAPS: hIAP-1 and hIAP-2. [4] [7] XIAP is the most potent human IAP protein currently identified. [8]

Discovery

Neuronal apoptosis inhibitor protein (NAIP) was the first homolog to baculoviral IAPs that was identified in humans. [4] With the sequencing data of NIAP, the gene sequence for a RING zinc-finger domain was discovered at site Xq24-25. [4] Using PCR and cloning, three BIR domains and a RING finger were found on the protein, which became known as X-linked Inhibitor of Apoptosis Protein. The transcript size of Xiap is 9.0kb, with an open reading frame of 1.8kb. [4] Xiap mRNA has been observed in all human adult and fetal tissues "except peripheral blood leukocytes". [4] The XIAP sequences led to the discovery of other members of the IAP family.

Structure

XIAP consists of three major types of structural elements (domains). Firstly, there is the baculoviral IAP repeat (BIR) domain consisting of approximately 70 amino acids, which characterizes all IAP. [8] Secondly, there is a UBA domain, which allows XIAP to bind to ubiquitin. Thirdly, there is a zinc-binding domain, or a "carboxy-terminal RING Finger". [7] XIAP has been characterized with three amino-terminal BIR domains followed by one UBA domain and finally one RING domain. [9] Between the BIR-1 and BIR-2 domains, there is a linker-BIR-2 region that is thought to contain the only element that comes into contact with the caspase molecule to form the XIAP/Caspase-7 complex. [10] In solution the full length form of XIAP forms a homodimer of approximately 114 kDa. [11]

Function

XIAP stops apoptotic cell death that is induced either by viral infection or by overproduction of caspases. Caspases are the enzymes primarily responsible for cell death. [7] XIAP binds to and inhibits caspase 3, 7 and 9. [12] The BIR2 domain of XIAP inhibits caspase 3 and 7, while BIR3 binds to and inhibits caspase 9. [8] The RING domain utilizes E3 ubiquitin ligase activity and enables IAPs to catalyze ubiquination of self, caspase-3, or caspase-7 by degradation via proteasome activity. [13] However, mutations affecting the RING Finger do not significantly affect apoptosis, indicating that the BIR domain is sufficient for the protein's function. [7] When inhibiting caspase-3 and caspase-7 activity, the BIR2 domain of XIAP binds to the active-site substrate groove, blocking access of the normal protein substrate that would result in apoptosis. [13] [14]

Caspases are activated by cytochrome c, which is released into the cytosol by dysfunctioning mitochondria. [7] Studies show that XIAP does not directly affect cytochrome c. [7]

XIAP distinguishes itself from the other human IAPs because it is able to effectively prevent cell death due to "TNF-α, Fas, UV light, and genotoxic agents". [7]


Inhibiting XIAP

XIAP is inhibited by DIABLO (Smac) and HTRA2 (Omi), two death-signaling proteins released into the cytoplasm by the mitochondria. [9] Smac/DIABLO, a mitochondrial protein and negative regulator of XIAP, can enhance apoptosis by binding to XIAP and preventing it from binding to caspases. This allows normal caspase activity to proceed. The binding process of Smac/DIABLO to XIAP and caspase release requires a conserved tetrapeptide motif. [13]

Clinical significance

Deregulation of XIAP can result in "cancer, neurodegenerative disorders, and autoimmunity". [9] High proportions of XIAP may function as a tumor marker. [8] In the development of lung cancer NCI-H460, the overexpression of XIAP not only inhibits caspase, but also stops the activity of cytochrome c (Apoptosis). In developing prostate cancer, XIAP is one of four IAPs overexpressed in the prostatic epithelium, indicating that a molecule that inhibits all IAPs may be necessary for effective treatment. [15] Apoptotic regulation is an extremely important biological function, as evidenced by "the conservation of the IAPs from humans to Drosophila". [4]

Mutations in the XIAP gene can result in a severe and rare type of inflammatory bowel disease. [16] Defects in the XIAP gene can also result in an extremely rare condition called X-linked lymphoproliferative disease type 2. [16] [17] [18]

Interactions

XIAP has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">BH3 interacting-domain death agonist</span> Protein-coding gene in the species Homo sapiens

The BH3 interacting-domain death agonist, or BID, gene is a pro-apoptotic member of the Bcl-2 protein family. Bcl-2 family members share one or more of the four characteristic domains of homology entitled the Bcl-2 homology (BH) domains, and can form hetero- or homodimers. Bcl-2 proteins act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities.

<span class="mw-page-title-main">Survivin</span> Mammalian protein

Survivin, also called baculoviral inhibitor of apoptosis repeat-containing 5 or BIRC5, is a protein that, in humans, is encoded by the BIRC5 gene.

<span class="mw-page-title-main">Caspase-9</span> Protein-coding gene in the species Homo sapiens

Caspase-9 is an enzyme that in humans is encoded by the CASP9 gene. It is an initiator caspase, critical to the apoptotic pathway found in many tissues. Caspase-9 homologs have been identified in all mammals for which they are known to exist, such as Mus musculus and Pan troglodytes.

Inhibitors of apoptosis are a group of proteins that mainly act on the intrinsic pathway that block programmed cell death, which can frequently lead to cancer or other effects for the cell if mutated or improperly regulated. Many of these inhibitors act to block caspases, a family of cysteine proteases that play an integral role in apoptosis. Some of these inhibitors include the Bcl-2 family, viral inhibitor crmA, and IAP's.

<span class="mw-page-title-main">Caspase 3</span> Protein-coding gene in the species Homo sapiens

Caspase-3 is a caspase protein that interacts with caspase-8 and caspase-9. It is encoded by the CASP3 gene. CASP3 orthologs have been identified in numerous mammals for which complete genome data are available. Unique orthologs are also present in birds, lizards, lissamphibians, and teleosts.

Nerve tissue is a biological molecule related to the function and maintenance of normal nervous tissue. An example would include, for example, the generation of myelin which insulates and protects nerves. These are typically calcium-binding proteins.

<span class="mw-page-title-main">Caspase 7</span> Protein-coding gene in the species Homo sapiens

Caspase-7, apoptosis-related cysteine peptidase, also known as CASP7, is a human protein encoded by the CASP7 gene. CASP7 orthologs have been identified in nearly all mammals for which complete genome data are available. Unique orthologs are also present in birds, lizards, lissamphibians, and teleosts.

<span class="mw-page-title-main">Baculoviral IAP repeat-containing protein 3</span> Protein-coding gene in the species Homo sapiens

Baculoviral IAP repeat-containing protein3 is a protein that in humans is encoded by the BIRC3 gene.

<span class="mw-page-title-main">Baculoviral IAP repeat-containing protein 2</span> Protein-coding gene in the species Homo sapiens

Baculoviral IAP repeat-containing protein 2 is a protein that in humans is encoded by the BIRC2 gene.

<span class="mw-page-title-main">TRAF1</span> Protein-coding gene in the species Homo sapiens

TNF receptor-associated factor 1 is a protein that in humans is encoded by the TRAF1 gene.

<span class="mw-page-title-main">Diablo homolog</span> Protein-coding gene in the species Homo sapiens

Diablo homolog (DIABLO) is a mitochondrial protein that in humans is encoded by the DIABLO gene on chromosome 12. DIABLO is also referred to as second mitochondria-derived activator of caspases or SMAC. This protein binds inhibitor of apoptosis proteins (IAPs), thus freeing caspases to activate apoptosis. Due to its proapoptotic function, SMAC is implicated in a broad spectrum of tumors, and small molecule SMAC mimetics have been developed to enhance current cancer treatments.

<span class="mw-page-title-main">APAF1</span> Mammalian protein found in Homo sapiens

Apoptotic protease activating factor 1, also known as APAF1, is a human homolog of C. elegans CED-4 gene.

<span class="mw-page-title-main">HtrA serine peptidase 2</span> Enzyme found in humans

Serine protease HTRA2, mitochondrial is an enzyme that in humans is encoded by the HTRA2 gene. This protein is involved in caspase-dependent apoptosis and in Parkinson's disease.

<span class="mw-page-title-main">BIRC7</span> Protein-coding gene in the species Homo sapiens

Baculoviral IAP repeat-containing protein 7 is a protein that in humans is encoded by the BIRC7 gene.

<span class="mw-page-title-main">XAF1</span> Protein-coding gene in the species Homo sapiens

XIAP-associated factor 1 is a protein that in humans is encoded by the XAF1 gene.

<span class="mw-page-title-main">ALS2CR2</span> Protein-coding gene in the species Homo sapiens

STE20-related kinase adapter protein beta is an enzyme that in humans is encoded by the STRADB gene.

<span class="mw-page-title-main">BIRC6</span> Protein-coding gene in the species Homo sapiens

Baculoviral IAP repeat-containing protein 6 is a protein that in humans is encoded by the BIRC6 gene.

<span class="mw-page-title-main">Caspase-activated DNase</span> Protein-coding gene in the species Homo sapiens

Caspase-activated DNase (CAD) or DNA fragmentation factor subunit beta is a protein that in humans is encoded by the DFFB gene. It breaks up the DNA during apoptosis and promotes cell differentiation. It is usually an inactive monomer inhibited by ICAD. This is cleaved before dimerization.

cIAP1 is the abbreviation for a human protein, cellular inhibitor of apoptosis protein-1. It belongs to the IAP family of proteins and therefore contains at least one BIR domain. cIAP1 is a multi-functional protein which can be found in the cytoplasm of cells and in the nucleus of tumor cells. Its function in this particular case is yet to be understood. However, it is well known that this protein has a big influence in the growth of diverse cancers. cIAP1 is involved in the development process of osteosarcoma and gastric cancer among others.

<span class="mw-page-title-main">Death regulator Nedd2-like caspase</span> Type of cysteine protease

Death regulator Nedd2-like caspase was firstly identified and characterised in Drosophila in 1999 as a cysteine protease containing an amino-terminal caspase recruitment domain. At first, it was thought of as an effector caspase involved in apoptosis, but subsequent findings have proved that it is, in fact, an initiator caspase with a crucial role in said type of programmed cell death.

References

  1. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000025860 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. 1 2 3 4 5 6 7 8 Liston P, Roy N, Tamai K, Lefebvre C, Baird S, Cherton-Horvat G, Farahani R, McLean M, Ikeda JE, MacKenzie A, Korneluk RG (January 1996). "Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes". Nature. 379 (6563): 349–53. Bibcode:1996Natur.379..349L. doi:10.1038/379349a0. PMID   8552191. S2CID   4305853.
  5. Duckett CS, Nava VE, Gedrich RW, Clem RJ, Van Dongen JL, Gilfillan MC, Shiels H, Hardwick JM, Thompson CB (June 1996). "A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors". The EMBO Journal. 15 (11): 2685–94. doi:10.1002/j.1460-2075.1996.tb00629.x. PMC   450204 . PMID   8654366.
  6. Holcik M, Korneluk RG (July 2000). "Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: role of La autoantigen in XIAP translation". Molecular and Cellular Biology. 20 (13): 4648–57. doi:10.1128/MCB.20.13.4648-4657.2000. PMC   85872 . PMID   10848591.
  7. 1 2 3 4 5 6 7 Duckett CS, Li F, Wang Y, Tomaselli KJ, Thompson CB, Armstrong RC (January 1998). "Human IAP-like protein regulates programmed cell death downstream of Bcl-xL and cytochrome c". Molecular and Cellular Biology. 18 (1): 608–15. doi:10.1128/MCB.18.1.608. PMC   121528 . PMID   9418907.
  8. 1 2 3 4 Deveraux QL, Reed JC (February 1999). "IAP family proteins--suppressors of apoptosis". Genes & Development. 13 (3): 239–52. doi: 10.1101/gad.13.3.239 . PMID   9990849.
  9. 1 2 3 Wilkinson JC, Cepero E, Boise LH, Duckett CS (August 2004). "Upstream regulatory role for XIAP in receptor-mediated apoptosis". Molecular and Cellular Biology. 24 (16): 7003–14. doi:10.1128/MCB.24.16.7003-7014.2004. PMC   479745 . PMID   15282301.
  10. Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H (March 2001). "Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain". Cell. 104 (5): 781–90. doi: 10.1016/S0092-8674(01)00273-2 . PMID   11257231. S2CID   14019346.
  11. Polykretis P, Luchinat E, Bonucci A, Giachetti A, Graewert MA, Svergun DI, Banci L (September 2019). "Conformational characterization of full-length X-chromosome-linked inhibitor of apoptosis protein (XIAP) through an integrated approach". IUCrJ. 6 (Pt 5): 948–957. doi:10.1107/S205225251901073X. PMC   6760453 . PMID   31576227.
  12. 1 2 3 Deveraux QL, Takahashi R, Salvesen GS, Reed JC (July 1997). "X-linked IAP is a direct inhibitor of cell-death proteases". Nature. 388 (6639): 300–4. Bibcode:1997Natur.388..300D. doi: 10.1038/40901 . PMID   9230442. S2CID   4395885.
  13. 1 2 3 Gewies A (2003). "Introduction to Apoptosis" (PDF). CellDeath.de. Retrieved 2008-08-12.
  14. Eckelman BP, Salvesen GS, Scott FL (October 2006). "Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family". EMBO Reports. 7 (10): 988–94. doi:10.1038/sj.embor.7400795. PMC   1618369 . PMID   17016456.
  15. Watson RW, Fitzpatrick JM (December 2005). "Targeting apoptosis in prostate cancer: focus on caspases and inhibitors of apoptosis proteins". BJU International. 96 (Suppl 2): 30–4. doi: 10.1111/j.1464-410X.2005.05944.x . PMID   16359436. S2CID   46321121.
  16. 1 2 Worthey EA, Mayer AN, Syverson GD, Helbling D, Bonacci BB, Decker B, Serpe JM, Dasu T, Tschannen MR, Veith RL, Basehore MJ, Broeckel U, Tomita-Mitchell A, Arca MJ, Casper JT, Margolis DA, Bick DP, Hessner MJ, Routes JM, Verbsky JW, Jacob HJ, Dimmock DP (March 2011). "Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease". Genetics in Medicine. 13 (3): 255–62. doi: 10.1097/GIM.0b013e3182088158 . PMID   21173700.
  17. "OMIM Entry - # 300635 - LYMPHOPROLIFERATIVE SYNDROME, X-LINKED, 2; XLP2". omim.org. Retrieved 2021-07-17.
  18. Rigaud S, Fondanèche MC, Lambert N, Pasquier B, Mateo V, Soulas P, et al. (November 2006). "XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome". Nature. 444 (7115): 110–4. Bibcode:2006Natur.444..110R. doi:10.1038/nature05257. PMID   17080092. S2CID   4416976.
  19. 1 2 Sanna MG, da Silva Correia J, Luo Y, Chuang B, Paulson LM, Nguyen B, Deveraux QL, Ulevitch RJ (August 2002). "ILPIP, a novel anti-apoptotic protein that enhances XIAP-mediated activation of JNK1 and protection against apoptosis". The Journal of Biological Chemistry. 277 (34): 30454–62. doi: 10.1074/jbc.M203312200 . PMID   12048196.
  20. 1 2 Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW, Liddington RC, Salvesen GS (March 2001). "Structural basis for the inhibition of caspase-3 by XIAP". Cell. 104 (5): 791–800. doi: 10.1016/S0092-8674(01)00274-4 . PMID   11257232. S2CID   17915093.
  21. 1 2 Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC (December 1997). "The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases". The EMBO Journal. 16 (23): 6914–25. doi:10.1093/emboj/16.23.6914. PMC   1170295 . PMID   9384571.
  22. 1 2 Suzuki Y, Nakabayashi Y, Nakata K, Reed JC, Takahashi R (July 2001). "X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct modes". The Journal of Biological Chemistry. 276 (29): 27058–63. doi: 10.1074/jbc.M102415200 . PMID   11359776.
  23. Suzuki Y, Nakabayashi Y, Takahashi R (July 2001). "Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death". Proceedings of the National Academy of Sciences of the United States of America. 98 (15): 8662–7. Bibcode:2001PNAS...98.8662S. doi: 10.1073/pnas.161506698 . PMC   37492 . PMID   11447297.
  24. Silke J, Hawkins CJ, Ekert PG, Chew J, Day CL, Pakusch M, Verhagen AM, Vaux DL (April 2002). "The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3- and caspase 9-interacting sites". The Journal of Cell Biology. 157 (1): 115–24. doi:10.1083/jcb.200108085. PMC   2173256 . PMID   11927604.
  25. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID   16189514. S2CID   4427026.
  26. 1 2 Davoodi J, Lin L, Kelly J, Liston P, MacKenzie AE (September 2004). "Neuronal apoptosis-inhibitory protein does not interact with Smac and requires ATP to bind caspase-9". The Journal of Biological Chemistry. 279 (39): 40622–8. doi: 10.1074/jbc.M405963200 . PMID   15280366.
  27. Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM, Alnemri ES, Salvesen GS, Reed JC (April 1998). "IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases". The EMBO Journal. 17 (8): 2215–23. doi:10.1093/emboj/17.8.2215. PMC   1170566 . PMID   9545235.
  28. Richter BW, Mir SS, Eiben LJ, Lewis J, Reffey SB, Frattini A, Tian L, Frank S, Youle RJ, Nelson DL, Notarangelo LD, Vezzoni P, Fearnhead HO, Duckett CS (July 2001). "Molecular cloning of ILP-2, a novel member of the inhibitor of apoptosis protein family". Molecular and Cellular Biology. 21 (13): 4292–301. doi:10.1128/MCB.21.13.4292-4301.2001. PMC   87089 . PMID   11390657.
  29. 1 2 Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM, Day CL, Tikoo A, Burke R, Wrobel C, Moritz RL, Simpson RJ, Vaux DL (January 2002). "HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins". The Journal of Biological Chemistry. 277 (1): 445–54. doi: 10.1074/jbc.M109891200 . PMID   11604410.
  30. Hunter AM, Kottachchi D, Lewis J, Duckett CS, Korneluk RG, Liston P (February 2003). "A novel ubiquitin fusion system bypasses the mitochondria and generates biologically active Smac/DIABLO". The Journal of Biological Chemistry. 278 (9): 7494–9. doi: 10.1074/jbc.C200695200 . PMID   12511567.
  31. Song Z, Yao X, Wu M (June 2003). "Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis". The Journal of Biological Chemistry. 278 (25): 23130–40. doi: 10.1074/jbc.M300957200 . PMID   12660240.
  32. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL (July 2000). "Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins". Cell. 102 (1): 43–53. doi: 10.1016/S0092-8674(00)00009-X . PMID   10929712. S2CID   3192775.
  33. Hegde R, Srinivasula SM, Datta P, Madesh M, Wassell R, Zhang Z, Cheong N, Nejmeh J, Fernandes-Alnemri T, Hoshino S, Alnemri ES (October 2003). "The polypeptide chain-releasing factor GSPT1/eRF3 is proteolytically processed into an IAP-binding protein". The Journal of Biological Chemistry. 278 (40): 38699–706. doi: 10.1074/jbc.M303179200 . PMID   12865429.
  34. Jordan BW, Dinev D, LeMellay V, Troppmair J, Gotz R, Wixler L, Sendtner M, Ludwig S, Rapp UR (October 2001). "Neurotrophin receptor-interacting mage homologue is an inducible inhibitor of apoptosis protein-interacting protein that augments cell death". The Journal of Biological Chemistry. 276 (43): 39985–9. doi: 10.1074/jbc.C100171200 . PMID   11546791.
  35. Winsauer G, Resch U, Hofer-Warbinek R, Schichl YM, de Martin R (November 2008). "XIAP regulates bi-phasic NF-kappaB induction involving physical interaction and ubiquitination of MEKK2". Cellular Signalling. 20 (11): 2107–12. doi:10.1016/j.cellsig.2008.08.004. PMID   18761086.
  36. Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K, Ueno N, Nishida E, Shibuya H, Matsumoto K (January 1999). "XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway". The EMBO Journal. 18 (1): 179–87. doi:10.1093/emboj/18.1.179. PMC   1171113 . PMID   9878061.
  37. Liston P, Fong WG, Kelly NL, Toji S, Miyazaki T, Conte D, Tamai K, Craig CG, McBurney MW, Korneluk RG (February 2001). "Identification of XAF1 as an antagonist of XIAP anti-Caspase activity". Nature Cell Biology. 3 (2): 128–33. doi:10.1038/35055027. PMID   11175744. S2CID   19731886.

Further reading