RING finger domain

Last updated
Zinc finger, C3HC4 type (RING finger)
1chc animated.gif
Structure of the C3HC4 domain. [1] Zinc ions are black spheres, coordinated by cysteines residues (blue).
Identifiers
Symbolzf-C3HC4
Pfam PF00097
Pfam clan CL0229
InterPro IPR001841
SMART SM00184
PROSITE PDOC00449
SCOP2 1chc / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

In molecular biology, a RING (short for Really Interesting New Gene) finger domain is a protein structural domain of zinc finger type which contains a C3HC4 amino acid motif which binds two zinc cations (seven cysteines and one histidine arranged non-consecutively). [2] [3] [4] [5] This protein domain contains 40 to 60 amino acids. Many proteins containing a RING finger play a key role in the ubiquitination pathway. Conversely, proteins with RING finger domains are the largest type of ubiquitin ligases in the human genome. [6]

Contents

Zinc fingers

Zinc finger (Znf) domains are relatively small protein motifs that bind one or more zinc atoms, and which usually contain multiple finger-like protrusions that make tandem contacts with their target molecule. They bind DNA, RNA, protein and/or lipid substrates. [7] [8] [9] [10] [11] Their binding properties depend on the amino acid sequence of the finger domains and of the linker between fingers, as well as on the higher-order structures and the number of fingers. Znf domains are often found in clusters, where fingers can have different binding specificities. There are many superfamilies of Znf motifs, varying in both sequence and structure. They display considerable versatility in binding modes, even between members of the same class (e.g. some bind DNA, others protein), suggesting that Znf motifs are stable scaffolds that have evolved specialised functions. For example, Znf-containing proteins function in gene transcription, translation, mRNA trafficking, cytoskeleton organisation, epithelial development, cell adhesion, protein folding, chromatin remodelling and zinc sensing. [12] Zinc-binding motifs are stable structures, and they rarely undergo conformational changes upon binding their target.

Some Zn finger domains have diverged such that they still maintain their core structure, but have lost their ability to bind zinc, using other means such as salt bridges or binding to other metals to stabilise the finger-like folds.

Function

Many RING finger domains simultaneously bind ubiquitination enzymes and their substrates and hence function as ligases. Ubiquitination in turn targets the substrate protein for degradation. [13] [14] [15]

Structure

The RING finger domain has the consensus sequence C-X2-C-X[9-39]-C-X[1-3]-H-X[2-3]-C-X2-C-X[4-48]-C-X2-C. [2] where:

The following is a schematic representation of the structure of the RING finger domain: [2]

                              x x x     x x x                              x      x x      x                             x       x x       x                            x        x x        x                           C        C   C        C                          x  \    / x   x \    /  x                          x    Zn   x   x   Zn    x                           C /    \ H   C /    \ C                           x         x x         x                  x x x x x x         x         x x x x x x

Examples

Examples of human genes which encode proteins containing a RING finger domain include:

AMFR, BARD1, BBAP, BFAR, BIRC2, BIRC3, BIRC7, BIRC8, BMI1, BRAP, BRCA1, CBL, CBLB, CBLC, CBLL1, CHFR, CNOT4, COMMD3, DTX1, DTX2, DTX3, DTX3L, DTX4, DZIP3, HCGV, HLTF, HOIL-1, IRF2BP2, LNX1, LNX2, LONRF1, LONRF2, LONRF3, MARCH1, MARCH10, MARCH2, MARCH3, MARCH4, MARCH5, MARCH6, MARCH7, MARCH8, MARCH9, MDM2, MEX3A, MEX3B, MEX3C, MEX3D, MGRN1, MIB1, MID1, MID2, MKRN1, MKRN2, MKRN3, MKRN4, MNAT1, MYLIP, NFX1, NFX2, PCGF1, PCGF2, PCGF3, PCGF4, PCGF5, PCGF6, PDZRN3, PDZRN4, PEX10, PHRF1, PJA1, PJA2, PML, PML-RAR, PXMP3, RAD18, RAG1, RAPSN, RBCK1, RBX1, RC3H1, RC3H2, RCHY1, RFP2, RFPL1, RFPL2, RFPL3, RFPL4B, RFWD2, RFWD3, RING1, RNF2, RNF4, RNF5, RNF6, RNF7, RNF8, RNF10, RNF11, RNF12, RNF13, RNF14, RNF19A, RNF20, RNF24, RNF25, RNF26, RNF32, RNF38, RNF39, RNF40, RNF41, RNF43, RNF44, RNF55, RNF71, RNF103, RNF111, RNF113A, RNF113B, RNF121, RNF122, RNF123, RNF125, RNF126, RNF128, RNF130, RNF133, RNF135, RNF138, RNF139, RNF141, RNF144A, RNF145, RNF146, RNF148, RNF149, RNF150, RNF151, RNF152, RNF157, RNF165, RNF166, RNF167, RNF168, RNF169, RNF170, RNF175, RNF180, RNF181, RNF182, RNF185, RNF207, RNF213, RNF215, RNFT1, SH3MD4, SH3RF1, SH3RF2, SYVN1, TIF1, TMEM118, TOPORS, TRAF2, TRAF3, TRAF4, TRAF5, TRAF6, TRAF7, TRAIP, TRIM2, TRIM3, TRIM4, TRIM5, TRIM6, TRIM7, TRIM8, TRIM9, TRIM10, TRIM11, TRIM13, TRIM15, TRIM17, TRIM21, TRIM22, TRIM23, TRIM24, TRIM25, TRIM26, TRIM27, TRIM28, TRIM31, TRIM32, TRIM33, TRIM34, TRIM35, TRIM36, TRIM38, TRIM39, TRIM40, TRIM41, TRIM42, TRIM43, TRIM45, TRIM46, TRIM47, TRIM48, TRIM49, TRIM50, TRIM52, TRIM54, TRIM55, TRIM56, TRIM58, TRIM59, TRIM60, TRIM61, TRIM62, TRIM63, TRIM65, TRIM67, TRIM68, TRIM69, TRIM71, TRIM72, TRIM73, TRIM74, TRIML1, TTC3, UHRF1, UHRF2, VPS11, VPS8, ZNF179, ZNF294, ZNF313, ZNF364, ZNF451, ZNF650, ZNFB7, ZNRF1, ZNRF2, ZNRF3, ZNRF4, and ZSWIM2.

Related Research Articles

<span class="mw-page-title-main">Ubiquitin</span> Regulatory protein found in most eukaryotic tissues

Ubiquitin is a small regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ubiquitously. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 1980s. Four genes in the human genome code for ubiquitin: UBB, UBC, UBA52 and RPS27A.

<span class="mw-page-title-main">Ubiquitin ligase</span> Protein

A ubiquitin ligase is a protein that recruits an E2 ubiquitin-conjugating enzyme that has been loaded with ubiquitin, recognizes a protein substrate, and assists or directly catalyzes the transfer of ubiquitin from the E2 to the protein substrate. In simple and more general terms, the ligase enables movement of ubiquitin from a ubiquitin carrier to another thing by some mechanism. The ubiquitin, once it reaches its destination, ends up being attached by an isopeptide bond to a lysine residue, which is part of the target protein. E3 ligases interact with both the target protein and the E2 enzyme, and so impart substrate specificity to the E2. Commonly, E3s polyubiquitinate their substrate with Lys48-linked chains of ubiquitin, targeting the substrate for destruction by the proteasome. However, many other types of linkages are possible and alter a protein's activity, interactions, or localization. Ubiquitination by E3 ligases regulates diverse areas such as cell trafficking, DNA repair, and signaling and is of profound importance in cell biology. E3 ligases are also key players in cell cycle control, mediating the degradation of cyclins, as well as cyclin dependent kinase inhibitor proteins. The human genome encodes over 600 putative E3 ligases, allowing for tremendous diversity in substrates.

<span class="mw-page-title-main">FYVE domain</span>

In molecular biology the FYVE zinc finger domain is named after the four cysteine-rich proteins: Fab 1, YOTB, Vac 1, and EEA1, in which it has been found. FYVE domains bind phosphatidylinositol 3-phosphate, in a way dependent on its metal ion coordination and basic amino acids. The FYVE domain inserts into cell membranes in a pH-dependent manner. The FYVE domain has been connected to vacuolar protein sorting and endosome function.

<span class="mw-page-title-main">CBL (gene)</span> Mammalian gene

Cbl is a mammalian gene family. CBL gene, a part of the Cbl family, encodes the protein CBL which is an E3 ubiquitin-protein ligase involved in cell signalling and protein ubiquitination. Mutations to this gene have been implicated in a number of human cancers, particularly acute myeloid leukaemia.

<span class="mw-page-title-main">NEDD4</span> Protein-coding gene in the species Homo sapiens

E3 ubiquitin-protein ligase NEDD4, also known as neural precursor cell expressed developmentally down-regulated protein 4 is an enzyme that is, in humans, encoded by the NEDD4 gene.

<span class="mw-page-title-main">MDM4</span> Protein-coding gene in the species Homo sapiens

Protein Mdm4 is a protein that in humans is encoded by the MDM4 gene.

<span class="mw-page-title-main">UBE2D1</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-conjugating enzyme E2 D1 is a protein that in humans is encoded by the UBE2D1 gene.

<span class="mw-page-title-main">RNF7</span> Protein-coding gene in the species Homo sapiens

RING-box protein 2 is a protein that in humans is encoded by the RNF7 gene.

<span class="mw-page-title-main">RING1</span> Protein-coding gene in the species Homo sapiens

E3 ubiquitin-protein ligase RING1 is an enzyme that in humans is encoded by the RING1 gene.

<span class="mw-page-title-main">TRIM25</span> Protein-coding gene in the species Homo sapiens

Tripartite motif-containing protein 25 is a protein that in humans is encoded by the TRIM25 gene.

<span class="mw-page-title-main">TRIM32</span> Protein-coding gene in the species Homo sapiens

Tripartite motif-containing protein 32 is a protein that in humans is encoded by the TRIM32 gene. Since its discovery in 1995, TRIM32 has been shown to be implicated in a number of diverse biological pathways.

<span class="mw-page-title-main">RNF8</span> Protein-coding gene in the species Homo sapiens

E3 ubiquitin-protein ligase RNF8 is an enzyme that in humans is encoded by the RNF8 gene. RNF8 has activity both in immune system functions and in DNA repair.

<span class="mw-page-title-main">RNF125</span> Protein-coding gene in the species Homo sapiens

E3 ubiquitin-protein ligase RNF125 is an enzyme that in humans is encoded by the RNF125 gene.

The endosomal sorting complexes required for transport (ESCRT) machinery is made up of cytosolic protein complexes, known as ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III. Together with a number of accessory proteins, these ESCRT complexes enable a unique mode of membrane remodeling that results in membranes bending/budding away from the cytoplasm. These ESCRT components have been isolated and studied in a number of organisms including yeast and humans. A eukaryotic signature protein, the machinery is found in all eukaryotes and some archaea.

<span class="mw-page-title-main">BTB/POZ domain</span>

The BTB/POZ domain is a structural domain found in proteins across the domain Eukarya. Given its prevalence in eukaryotes and its absence in Archaea and bacteria, it likely arose after the origin of eukaryotes. While primarily a protein-protein interaction domain, some BTB domains have additional functionality in transcriptional regulation, cytoskeletal mobility, protein ubiquitination and degradation, and ion channel formation and operation. BTB domains have traditionally been classified by the other structural features present in the protein.

<span class="mw-page-title-main">S4 protein domain</span>

In molecular biology, S4 domain refers to a small RNA-binding protein domain found in a ribosomal protein named uS4. The S4 domain is approximately 60-65 amino acid residues long, occurs in a single copy at various positions in different proteins and was originally found in pseudouridine syntheses, a bacterial ribosome-associated protein.

In molecular biology the ZZ-type zinc finger domain is a type of protein domain that was named because of its ability to bind two zinc ions. These domains contain 4-6 Cys residues that participate in zinc binding, including a Cys-X2-Cys motif found in other zinc finger domains. These zinc fingers are thought to be involved in protein-protein interactions. The structure of the ZZ domain shows that it belongs to the family of cross-brace zinc finger motifs that include the PHD, RING, and FYVE domains. ZZ-type zinc finger domains are found in:

<span class="mw-page-title-main">B-box zinc finger</span>

In molecular biology the B-box-type zinc finger domain is a short protein domain of around 40 amino acid residues in length. B-box zinc fingers can be divided into two groups, where types 1 and 2 B-box domains differ in their consensus sequence and in the spacing of the 7-8 zinc-binding residues. Several proteins contain both types 1 and 2 B-boxes, suggesting some level of cooperativity between these two domains.

<span class="mw-page-title-main">Ubiquitin-interacting motif</span>

In molecular biology, the Ubiquitin-Interacting Motif (UIM), or 'LALAL-motif', is a sequence motif of about 20 amino acid residues, which was first described in the 26S proteasome subunit PSD4/RPN-10 that is known to recognise ubiquitin. In addition, the UIM is found, often in tandem or triplet arrays, in a variety of proteins either involved in ubiquitination and ubiquitin metabolism, or known to interact with ubiquitin-like modifiers. Among the UIM proteins are two different subgroups of the UBP family of deubiquitinating enzymes, one F-box protein, one family of HECT-containing ubiquitin-ligases (E3s) from plants, and several proteins containing ubiquitin-associated UBA and/or UBX domains. In most of these proteins, the UIM occurs in multiple copies and in association with other domains such as UBA, UBX, ENTH domain, EH, VHS, SH3 domain, HECT, VWFA, EF-hand calcium-binding, WD-40, F-box, LIM, protein kinase, ankyrin, PX, phosphatidylinositol 3- and 4-kinase, C2 domain, OTU, DnaJ domain, RING-finger or FYVE-finger. UIMs have been shown to bind ubiquitin and to serve as a specific targeting signal important for monoubiquitination. Thus, UIMs may have several functions in ubiquitin metabolism each of which may require different numbers of UIMs.

<span class="mw-page-title-main">Ubiquitin-binding domain</span> Type of protein domain

Ubiquitin-binding domains (UBDs) are protein domains that recognise and bind non-covalently to ubiquitin through protein-protein interactions. As of 2019, a total of 29 types of UBDs had been identified in the human proteome. Most UBDs bind to ubiquitin only weakly, with binding affinities in the low to mid μM range. Proteins containing UBDs are known as ubiquitin-binding proteins or sometimes as "ubiquitin receptors".

References

  1. Barlow PN, Luisi B, Milner A, Elliott M, Everett R (March 1994). "Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy. A new structural class of zinc-finger". J. Mol. Biol. 237 (2): 201–11. doi:10.1006/jmbi.1994.1222. PMID   8126734.
  2. 1 2 3 Borden KL, Freemont PS (1996). "The RING finger domain: a recent example of a sequence-structure family". Curr. Opin. Struct. Biol. 6 (3): 395–401. doi:10.1016/S0959-440X(96)80060-1. PMID   8804826.
  3. Hanson IM, Poustka A, Trowsdale J (1991). "New genes in the class II region of the human major histocompatibility complex". Genomics. 10 (2): 417–24. doi:10.1016/0888-7543(91)90327-B. PMID   1906426.
  4. Freemont PS, Hanson IM, Trowsdale J (1991). "A novel cysteine-rich sequence motif". Cell. 64 (3): 483–4. doi: 10.1016/0092-8674(91)90229-R . PMID   1991318.
  5. Lovering R, Hanson IM, Borden KL, Martin S, O'Reilly NJ, Evan GI, Rahman D, Pappin DJ, Trowsdale J, Freemont PS (1993). "Identification and preliminary characterization of a protein motif related to the zinc finger". Proc. Natl. Acad. Sci. U.S.A. 90 (6): 2112–6. Bibcode:1993PNAS...90.2112L. doi: 10.1073/pnas.90.6.2112 . PMC   46035 . PMID   7681583.
  6. Scalia, Pierluigi; Williams, Stephen J.; Suma, Antonio; Carnevale, Vincenzo (2023-06-21). "The DTX Protein Family: An Emerging Set of E3 Ubiquitin Ligases in Cancer". Cells. 12 (13): 1680. doi: 10.3390/cells12131680 . ISSN   2073-4409. PMC   10340142 . PMID   37443713.
  7. Klug A (1999). "Zinc finger peptides for the regulation of gene expression". J. Mol. Biol. 293 (2): 215–8. doi:10.1006/jmbi.1999.3007. PMID   10529348.
  8. Hall TM (2005). "Multiple modes of RNA recognition by zinc finger proteins". Curr. Opin. Struct. Biol. 15 (3): 367–73. doi:10.1016/j.sbi.2005.04.004. PMID   15963892.
  9. Brown RS (2005). "Zinc finger proteins: getting a grip on RNA". Curr. Opin. Struct. Biol. 15 (1): 94–8. doi:10.1016/j.sbi.2005.01.006. PMID   15718139.
  10. Gamsjaeger R, Liew CK, Loughlin FE, Crossley M, Mackay JP (2007). "Sticky fingers: zinc-fingers as protein-recognition motifs". Trends Biochem. Sci. 32 (2): 63–70. doi:10.1016/j.tibs.2006.12.007. PMID   17210253.
  11. Matthews JM, Sunde M (2002). "Zinc fingers--folds for many occasions". IUBMB Life. 54 (6): 351–5. doi: 10.1080/15216540216035 . PMID   12665246. S2CID   22109146.
  12. Laity JH, Lee BM, Wright PE (2001). "Zinc finger proteins: new insights into structural and functional diversity". Curr. Opin. Struct. Biol. 11 (1): 39–46. doi:10.1016/S0959-440X(00)00167-6. PMID   11179890.
  13. Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999). "RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination". Proc. Natl. Acad. Sci. U.S.A. 96 (20): 11364–9. Bibcode:1999PNAS...9611364L. doi: 10.1073/pnas.96.20.11364 . PMC   18039 . PMID   10500182.
  14. Joazeiro CA, Weissman AM (2000). "RING finger proteins: mediators of ubiquitin ligase activity". Cell. 102 (5): 549–52. doi: 10.1016/S0092-8674(00)00077-5 . PMID   11007473.
  15. Freemont PS (2000). "RING for destruction?". Curr. Biol. 10 (2): R84–7. doi: 10.1016/S0960-9822(00)00287-6 . PMID   10662664.
This article incorporates text from the public domain Pfam and InterPro: IPR001841