TRAF6

Last updated
TRAF6
Protein TRAF6 PDB 1lb4.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases TRAF6 , MGC:3310, RNF85, TNF receptor associated factor 6
External IDs OMIM: 602355 MGI: 108072 HomoloGene: 3395 GeneCards: TRAF6
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_145803
NM_004620

NM_009424
NM_001303273

RefSeq (protein)

NP_004611
NP_665802

NP_001290202
NP_033450

Location (UCSC) Chr 11: 36.48 – 36.51 Mb Chr 2: 101.51 – 101.53 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

TRAF6 is a TRAF human protein.

Function

The protein encoded by this gene is a member of the TNF receptor associated factor (TRAF) protein family. TRAF proteins are associated with, and mediate signal transduction from members of the TNF receptor superfamily. This protein mediates the signaling not only from the members of the TNF receptor superfamily, but also from the members of the Toll/IL-1 family. Signals from receptors such as CD40, TNFSF11/TRANCE/RANKL and IL-1 have been shown to be mediated by this protein. This protein also interacts with various protein kinases including IRAK1/IRAK, SRC and PKCzeta, which provides a link between distinct signaling pathways. This protein functions as a signal transducer in the NF-kappaB pathway that activates IkappaB kinase (IKK) in response to proinflammatory cytokines. The interaction of this protein with UBE2N/UBC13, and UBE2V1/UEV1A, which are ubiquitin conjugating enzymes catalyzing the formation of polyubiquitin chains, has been found to be required for IKK activation by this protein. Two alternatively spliced transcript variants encoding identical proteins have been reported. [5]

Signaling pathway of toll-like receptors. Dashed grey lines represent unknown associations Toll-like receptor pathways revised.jpg
Signaling pathway of toll-like receptors. Dashed grey lines represent unknown associations

Interactions

TRAF6 has been shown to interact with:

Model organisms

Model organisms have been used in the study of TRAF6 function. A conditional knockout mouse line called Traf6tm2a(EUCOMM)Wtsi was generated at the Wellcome Trust Sanger Institute. [44] Male and female animals underwent a standardized phenotypic screen [45] to determine the effects of deletion. [46] [47] [48] [49] Additional screens performed: - In-depth immunological phenotyping [50]

Related Research Articles

<span class="mw-page-title-main">IRAK4</span> Protein-coding gene in humans

IRAK-4, in the IRAK family, is a protein kinase involved in signaling innate immune responses from Toll-like receptors. It also supports signaling from T-cell receptors. IRAK4 contains domain structures which are similar to those of IRAK1, IRAK2, IRAKM and Pelle. IRAK4 is unique compared to IRAK1, IRAK2 and IRAKM in that it functions upstream of the other IRAKs, but is more similar to Pelle in this trait. IRAK4 has important clinical applications.

<span class="mw-page-title-main">RANK</span> Mammalian protein found in Homo sapiens

Receptor activator of nuclear factor κ B (RANK), also known as TRANCE receptor or TNFRSF11A, is a member of the tumor necrosis factor receptor (TNFR) molecular sub-family. RANK is the receptor for RANK-Ligand (RANKL) and part of the RANK/RANKL/OPG signaling pathway that regulates osteoclast differentiation and activation. It is associated with bone remodeling and repair, immune cell function, lymph node development, thermal regulation, and mammary gland development. Osteoprotegerin (OPG) is a decoy receptor for RANKL, and regulates the stimulation of the RANK signaling pathway by competing for RANKL. The cytoplasmic domain of RANK binds TRAFs 1, 2, 3, 5, and 6 which transmit signals to downstream targets such as NF-κB and JNK.

<span class="mw-page-title-main">MYD88</span> Protein-coding gene in the species Homo sapiens

Myeloid differentiation primary response 88 (MYD88) is a protein that, in humans, is encoded by the MYD88 gene.

<span class="mw-page-title-main">TRAF2</span> Protein-coding gene in humans

TNF receptor-associated factor 2 is a protein that in humans is encoded by the TRAF2 gene.

<span class="mw-page-title-main">CHUK</span> Protein-coding gene in the species Homo sapiens

Inhibitor of nuclear factor kappa-B kinase subunit alpha (IKK-α) also known as IKK1 or conserved helix-loop-helix ubiquitous kinase (CHUK) is a protein kinase that in humans is encoded by the CHUK gene. IKK-α is part of the IκB kinase complex that plays an important role in regulating the NF-κB transcription factor. However, IKK-α has many additional cellular targets, and is thought to function independently of the NF-κB pathway to regulate epidermal differentiation.

<span class="mw-page-title-main">MAP3K7</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), also known as TAK1, is an enzyme that in humans is encoded by the MAP3K7 gene.

<span class="mw-page-title-main">TRAF1</span> Protein-coding gene in the species Homo sapiens

TNF receptor-associated factor 1 is a protein that in humans is encoded by the TRAF1 gene.

<span class="mw-page-title-main">TRAF5</span> Protein-coding gene in the species Homo sapiens

TNF receptor-associated factor 5 is a protein that in humans is encoded by the TRAF5 gene.

<span class="mw-page-title-main">IRAK1</span> Protein-coding gene in the species Homo sapiens

Interleukin-1 receptor-associated kinase 1 (IRAK-1) is an enzyme in humans encoded by the IRAK1 gene. IRAK-1 plays an important role in the regulation of the expression of inflammatory genes by immune cells, such as monocytes and macrophages, which in turn help the immune system in eliminating bacteria, viruses, and other pathogens. IRAK-1 is part of the IRAK family consisting of IRAK-1, IRAK-2, IRAK-3, and IRAK-4, and is activated by inflammatory molecules released by signaling pathways during pathogenic attack. IRAK-1 is classified as a kinase enzyme, which regulates pathways in both innate and adaptive immune systems.

<span class="mw-page-title-main">Interleukin 1 receptor, type I</span>

Interleukin 1 receptor, type I (IL1R1) also known as CD121a, is an interleukin receptor. IL1R1 also denotes its human gene.

<span class="mw-page-title-main">MAP3K14</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 14 also known as NF-kappa-B-inducing kinase (NIK) is an enzyme that in humans is encoded by the MAP3K14 gene.

<span class="mw-page-title-main">IKBKE</span> Protein-coding gene in the species Homo sapiens

Inhibitor of nuclear factor kappa-B kinase subunit epsilon also known as I-kappa-B kinase epsilon or IKK-epsilon is an enzyme that in humans is encoded by the IKBKE gene.

<span class="mw-page-title-main">MAP3K7IP2</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 7-interacting protein 2 is an enzyme that in humans is encoded by the MAP3K7IP2 gene.

<span class="mw-page-title-main">TAB1</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 7-interacting protein 1 is an enzyme that in humans is encoded by the TAB1 gene.

<span class="mw-page-title-main">IL1RAP</span> Protein-coding gene in the species Homo sapiens

Interleukin-1 receptor accessory protein is a protein that in humans is encoded by the IL1RAP gene.

<span class="mw-page-title-main">TRAF4</span> Protein-coding gene in the species Homo sapiens

TNF receptor-associated factor 4 (TRAF4) also known as RING finger protein 83 (RNF83) is a protein that in humans is encoded by the TRAF4 gene.

<span class="mw-page-title-main">MAP3K7IP3</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 7-interacting protein 3 is an enzyme that in humans is encoded by the MAP3K7IP3 gene.

<span class="mw-page-title-main">IRAK2</span> Protein-coding gene in the species Homo sapiens

Interleukin-1 receptor-associated kinase-like 2 is an enzyme that in humans is encoded by the IRAK2 gene.

The interleukin-1 receptor (IL-1R) associated kinase (IRAK) family plays a crucial role in the protective response to pathogens introduced into the human body by inducing acute inflammation followed by additional adaptive immune responses. IRAKs are essential components of the Interleukin-1 receptor signaling pathway and some Toll-like receptor signaling pathways. Toll-like receptors (TLRs) detect microorganisms by recognizing specific pathogen-associated molecular patterns (PAMPs) and IL-1R family members respond the interleukin-1 (IL-1) family cytokines. These receptors initiate an intracellular signaling cascade through adaptor proteins, primarily, MyD88. This is followed by the activation of IRAKs. TLRs and IL-1R members have a highly conserved amino acid sequence in their cytoplasmic domain called the Toll/Interleukin-1 (TIR) domain. The elicitation of different TLRs/IL-1Rs results in similar signaling cascades due to their homologous TIR motif leading to the activation of mitogen-activated protein kinases (MAPKs) and the IκB kinase (IKK) complex, which initiates a nuclear factor-κB (NF-κB) and AP-1-dependent transcriptional response of pro-inflammatory genes. Understanding the key players and their roles in the TLR/IL-1R pathway is important because the presence of mutations causing the abnormal regulation of Toll/IL-1R signaling leading to a variety of acute inflammatory and autoimmune diseases.

<span class="mw-page-title-main">Act 1 adaptor protein</span> Act 1 adaptor protein

Act 1 adaptor protein is an essential intermediate in the interleukin-17 pathway. The IL-17 protein is a pro-inflammatory cytokine important for tissue inflammation in host defense against infection and in autoimmune disease. It is produced by the CD4 + T cells, in particular the Th17 cells. There are 6 subtypes of IL-17, from IL-17A to IL17-F, these subtypes have nearly identical structures. We know that the cytokines are interacting homotypically, but IL-17A and IL-17F are capable do perform heterotypic interaction too.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000175104 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000027164 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: TRAF6 TNF receptor-associated factor 6".
  6. Nishitoh H, Saitoh M, Mochida Y, Takeda K, Nakano H, Rothe M, Miyazono K, Ichijo H (September 1998). "ASK1 is essential for JNK/SAPK activation by TRAF2". Mol. Cell. 2 (3): 389–95. doi: 10.1016/s1097-2765(00)80283-x . PMID   9774977.
  7. Hoeflich KP, Yeh WC, Yao Z, Mak TW, Woodgett JR (October 1999). "Mediation of TNF receptor-associated factor effector functions by apoptosis signal-regulating kinase-1 (ASK1)". Oncogene. 18 (42): 5814–20. doi:10.1038/sj.onc.1202975. PMID   10523862.
  8. 1 2 Mochida Y, Takeda K, Saitoh M, Nishitoh H, Amagasa T, Ninomiya-Tsuji J, Matsumoto K, Ichijo H (October 2000). "ASK1 inhibits interleukin-1-induced NF-kappa B activity through disruption of TRAF6-TAK1 interaction". J. Biol. Chem. 275 (42): 32747–52. doi: 10.1074/jbc.M003042200 . PMID   10921914.
  9. Tsukamoto N, Kobayashi N, Azuma S, Yamamoto T, Inoue J (February 1999). "Two differently regulated nuclear factor kappaB activation pathways triggered by the cytoplasmic tail of CD40". Proc. Natl. Acad. Sci. U.S.A. 96 (4): 1234–9. doi: 10.1073/pnas.96.4.1234 . PMC   15446 . PMID   9990007.
  10. Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC (Dec 1997). "The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases". EMBO J. 16 (23): 6914–25. doi:10.1093/emboj/16.23.6914. PMC   1170295 . PMID   9384571.
  11. Bai S, Zha J, Zhao H, Ross FP, Teitelbaum SL (November 2008). "Tumor necrosis factor receptor-associated factor 6 is an intranuclear transcriptional coactivator in osteoclasts". J. Biol. Chem. 283 (45): 30861–7. doi: 10.1074/jbc.M802525200 . PMC   2662164 . PMID   18768464.
  12. Wu Y, Liu J, Zhang Z, Huang H, Shen J, Zhang S, Jiang Y, Luo L, Yin Z (January 2009). "HSP27 regulates IL-1 stimulated IKK activation through interacting with TRAF6 and affecting its ubiquitination". Cell. Signal. 21 (1): 143–50. doi:10.1016/j.cellsig.2008.10.001. PMID   18950704.
  13. 1 2 Windheim M, Stafford M, Peggie M, Cohen P (March 2008). "Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IkappaBalpha kinase". Mol. Cell. Biol. 28 (5): 1783–91. doi:10.1128/MCB.02380-06. PMC   2258775 . PMID   18180283.
  14. 1 2 Lamothe B, Campos AD, Webster WK, Gopinathan A, Hur L, Darnay BG (September 2008). "The RING domain and first zinc finger of TRAF6 coordinate signaling by interleukin-1, lipopolysaccharide, and RANKL". J. Biol. Chem. 283 (36): 24871–80. doi: 10.1074/jbc.M802749200 . PMC   2529010 . PMID   18617513.
  15. 1 2 Chen F, Du Y, Zhang Z, Chen G, Zhang M, Shu HB, Zhai Z, Chen D (April 2008). "Syntenin negatively regulates TRAF6-mediated IL-1R/TLR4 signaling". Cell. Signal. 20 (4): 666–74. doi:10.1016/j.cellsig.2007.12.002. PMID   18234474. S2CID   28812149.
  16. 1 2 Wesche H, Gao X, Li X, Kirschning CJ, Stark GR, Cao Z (July 1999). "IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family". J. Biol. Chem. 274 (27): 19403–10. doi: 10.1074/jbc.274.27.19403 . PMID   10383454.
  17. 1 2 Muzio M, Ni J, Feng P, Dixit VM (November 1997). "IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling". Science. 278 (5343): 1612–5. doi:10.1126/science.278.5343.1612. PMID   9374458.
  18. Qian Y, Commane M, Ninomiya-Tsuji J, Matsumoto K, Li X (November 2001). "IRAK-mediated translocation of TRAF6 and TAB2 in the interleukin-1-induced activation of NFkappa B". J. Biol. Chem. 276 (45): 41661–7. doi: 10.1074/jbc.M102262200 . PMID   11518704.
  19. Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV (October 1996). "TRAF6 is a signal transducer for interleukin-1". Nature. 383 (6599): 443–6. doi:10.1038/383443a0. PMID   8837778. S2CID   4269027.
  20. Takatsuna H, Kato H, Gohda J, Akiyama T, Moriya A, Okamoto Y, Yamagata Y, Otsuka M, Umezawa K, Semba K, Inoue J (April 2003). "Identification of TIFA as an adapter protein that links tumor necrosis factor receptor-associated factor 6 (TRAF6) to interleukin-1 (IL-1) receptor-associated kinase-1 (IRAK-1) in IL-1 receptor signaling". J. Biol. Chem. 278 (14): 12144–50. doi: 10.1074/jbc.M300720200 . PMID   12566447.
  21. Li S, Strelow A, Fontana EJ, Wesche H (April 2002). "IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase". Proc. Natl. Acad. Sci. U.S.A. 99 (8): 5567–72. doi: 10.1073/pnas.082100399 . PMC   122810 . PMID   11960013.
  22. 1 2 Ling L, Goeddel DV (August 2000). "T6BP, a TRAF6-interacting protein involved in IL-1 signaling". Proc. Natl. Acad. Sci. U.S.A. 97 (17): 9567–72. doi: 10.1073/pnas.170279097 . PMC   16905 . PMID   10920205.
  23. 1 2 3 Takaesu G, Ninomiya-Tsuji J, Kishida S, Li X, Stark GR, Matsumoto K (April 2001). "Interleukin-1 (IL-1) receptor-associated kinase leads to activation of TAK1 by inducing TAB2 translocation in the IL-1 signaling pathway". Mol. Cell. Biol. 21 (7): 2475–84. doi:10.1128/MCB.21.7.2475-2484.2001. PMC   86880 . PMID   11259596.
  24. 1 2 3 Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K, Ninomiya-Tsuji J, Matsumoto K (April 2000). "TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway". Mol. Cell. 5 (4): 649–58. doi: 10.1016/s1097-2765(00)80244-0 . PMID   10882101.
  25. 1 2 3 Walsh MC, Kim GK, Maurizio PL, Molnar EE, Choi Y (2008). Unutmaz D (ed.). "TRAF6 autoubiquitination-independent activation of the NFkappaB and MAPK pathways in response to IL-1 and RANKL". PLOS ONE. 3 (12): e4064. doi: 10.1371/journal.pone.0004064 . PMC   2603309 . PMID   19112497.
  26. 1 2 Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K (March 1999). "The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway". Nature. 398 (6724): 252–6. doi:10.1038/18465. PMID   10094049. S2CID   4421236.
  27. 1 2 Ishitani T, Takaesu G, Ninomiya-Tsuji J, Shibuya H, Gaynor RB, Matsumoto K (Dec 2003). "Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling". EMBO J. 22 (23): 6277–88. doi:10.1093/emboj/cdg605. PMC   291846 . PMID   14633987.
  28. 1 2 Ma Q, Zhou L, Shi H, Huo K (June 2008). "NUMBL interacts with TAB2 and inhibits TNFalpha and IL-1beta-induced NF-kappaB activation". Cell. Signal. 20 (6): 1044–51. doi:10.1016/j.cellsig.2008.01.015. PMID   18299187.
  29. Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin CH, Landström M (October 2008). "The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner". Nat. Cell Biol. 10 (10): 1199–207. doi:10.1038/ncb1780. PMID   18758450. S2CID   22984417.
  30. 1 2 Chen L, Dong W, Zou T, Ouyang L, He G, Liu Y, Qi Y (August 2008). "Protein phosphatase 4 negatively regulates LPS cascade by inhibiting ubiquitination of TRAF6". FEBS Lett. 582 (19): 2843–9. doi: 10.1016/j.febslet.2008.07.014 . PMID   18634786. S2CID   27700566.
  31. Mizukami J, Takaesu G, Akatsuka H, Sakurai H, Ninomiya-Tsuji J, Matsumoto K, Sakurai N (February 2002). "Receptor activator of NF-kappaB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6". Mol. Cell. Biol. 22 (4): 992–1000. doi:10.1128/mcb.22.4.992-1000.2002. PMC   134634 . PMID   11809792.
  32. Darnay BG, Haridas V, Ni J, Moore PA, Aggarwal BB (August 1998). "Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase". J. Biol. Chem. 273 (32): 20551–5. doi: 10.1074/jbc.273.32.20551 . PMID   9685412.
  33. Darnay BG, Ni J, Moore PA, Aggarwal BB (March 1999). "Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif". J. Biol. Chem. 274 (12): 7724–31. doi:10.1074/jbc.274.12.7724. PMID   10075662.
  34. Galibert L, Tometsko ME, Anderson DM, Cosman D, Dougall WC (Dec 1998). "The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily". J. Biol. Chem. 273 (51): 34120–7. doi: 10.1074/jbc.273.51.34120 . PMID   9852070.
  35. Kim HH, Lee DE, Shin JN, Lee YS, Jeon YM, Chung CH, Ni J, Kwon BS, Lee ZH (January 1999). "Receptor activator of NF-kappaB recruits multiple TRAF family adaptors and activates c-Jun N-terminal kinase". FEBS Lett. 443 (3): 297–302. doi: 10.1016/s0014-5793(98)01731-1 . PMID   10025951. S2CID   46210019.
  36. Wald D, Qin J, Zhao Z, Qian Y, Naramura M, Tian L, Towne J, Sims JE, Stark GR, Li X (September 2003). "SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling". Nat. Immunol. 4 (9): 920–7. doi:10.1038/ni968. PMID   12925853. S2CID   25246605.
  37. Sanz L, Diaz-Meco MT, Nakano H, Moscat J (April 2000). "The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway". EMBO J. 19 (7): 1576–86. doi:10.1093/emboj/19.7.1576. PMC   310227 . PMID   10747026.
  38. Heyninck K, Beyaert R (January 1999). "The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-kappaB activation at the level of TRAF6". FEBS Lett. 442 (2–3): 147–50. doi: 10.1016/s0014-5793(98)01645-7 . PMID   9928991. S2CID   19072203.
  39. Evans PC, Taylor ER, Coadwell J, Heyninck K, Beyaert R, Kilshaw PJ (August 2001). "Isolation and characterization of two novel A20-like proteins". Biochem. J. 357 (Pt 3): 617–23. doi:10.1042/0264-6021:3570617. PMC   1221992 . PMID   11463333.
  40. Xia XZ, Treanor J, Senaldi G, Khare SD, Boone T, Kelley M, Theill LE, Colombero A, Solovyev I, Lee F, McCabe S, Elliott R, Miner K, Hawkins N, Guo J, Stolina M, Yu G, Wang J, Delaney J, Meng SY, Boyle WJ, Hsu H (July 2000). "TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation". J. Exp. Med. 192 (1): 137–43. doi:10.1084/jem.192.1.137. PMC   1887716 . PMID   10880535.
  41. Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ (October 2000). "Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain". Cell. 103 (2): 351–61. doi: 10.1016/s0092-8674(00)00126-4 . PMID   11057907. S2CID   18154645.
  42. Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, Dugger D, Gordon N, Sidhu SS, Fellouse FA, Komuves L, French DM, Ferrando RE, Lam C, Compaan D, Yu C, Bosanac I, Hymowitz SG, Kelley RF, Dixit VM (August 2008). "Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies". Cell. 134 (4): 668–78. doi: 10.1016/j.cell.2008.07.039 . PMID   18724939. S2CID   3955385.
  43. Conze DB, Wu CJ, Thomas JA, Landstrom A, Ashwell JD (May 2008). "Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-kappaB activation". Mol. Cell. Biol. 28 (10): 3538–47. doi:10.1128/MCB.02098-07. PMC   2423148 . PMID   18347055.
  44. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID   85911512.
  45. 1 2 "International Mouse Phenotyping Consortium".
  46. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC   3572410 . PMID   21677750.
  47. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi: 10.1038/474262a . PMID   21677718.
  48. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi: 10.1016/j.cell.2006.12.018 . PMID   17218247. S2CID   18872015.
  49. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Sanger Institute Mouse Genetics Project, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC   3717207 . PMID   23870131.
  50. 1 2 "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading