Death-inducing signaling complex

Last updated
Signaling pathway of TNF-R1. Dashed grey lines represent multiple steps. Fas signaling.jpg
Signaling pathway of TNF-R1. Dashed grey lines represent multiple steps.

The death-inducing signaling complex (DISC) is a multi-protein complex formed by members of the death receptor family of apoptosis-inducing cellular receptors. [1] A typical example is FasR, which forms the DISC upon trimerization as a result of its ligand (FasL) binding. The DISC is composed of the death receptor, FADD, and caspase 8. It transduces a downstream signal cascade resulting in apoptosis.

Contents

Description

The Fas ligands, or cytotoxicity-dependent APO-1-associated proteins, physically associate with APO-1 (also known as the Fas receptor, or CD95), a tumor necrosis factor containing a functional death domain. This association leads to the formation of the DISC, thereby inducing apoptosis. [1] The entire process is initiated when the cell registers the presence of CD95L, the cognate ligand for APO-1. [2] Upon binding, the CAP proteins and procaspase-8 (composed of FLICE, MACH, and Mch5) bind to CD95 through death domain and death effector domain interactions. Procaspase-8 activation is thought to occur through a dimerization process with other procaspase-8 molecules, known as an induced proximity model. [ citation needed ]

Forming complex

The CAP proteins associate only with the oligomerized version of APO-1 when forming the complex. The CAP1 are CAP2 proteins are also known as FADD/MORT1, an adaptor molecule with a death domain. CAP4 is also called FLICE, a cysteine protease with two death effector domains. [3] CAP3 is the prodomain of FLICE generated during proteolytic activation. [4] Once the DISC assembles, it allows APO-1 signaling to occur, which triggers cell death. In order to do this, downstream targets such as FLICE must be activated. In its inactive state, FLICE's two death domains are thought to bind together and prevent its activation. Once APO-1 aggregates within the cytosol, it recruits FADD, CAP3, and FLICE to the receptor, where FLICE is modified into several active subunits, which have the ability to cleave a variety of substrates. This proteolytic activity then results in a cascade of caspase activation, and ultimately cell death. This apoptotic activity is critical for tissue homeostasis and immune function. [ citation needed ]

Inhibiting factors

APO-1-mediated apoptosis can be inhibited by a variety of factors, including the viral caspase inhibitors CrmA and p35, as well as viral FLICE-inhibitory proteins known as v-FLIPs. When in the presence of APO-1, v-FLIPs preferentially bind and prevent procaspase-8 from being recruited; as such, apoptosis is stalled. Humans have a homolog for v-FLIP known as c-FLIP, which occurs in two endogenous forms (c-FLIPL (long) and c-FLIPS (short)). These are similar in structure to procaspase-8, but lack the amino acids necessary for caspase-8 catalytic activity. It is thought that c-FLIP may be involved in modulating the immune system, as c-FLIPS is upregulated upon stimulation of the T cell receptor. Furthermore, as high expression of FLIP is known to promote tumor growth, these inhibitor molecules play a role in cancer proliferation. [ citation needed ]

The DISC has been implicated as a possible drug development target for various cancers, including leukemia, glioma, and colon cancer. In glioma cells, the effects of TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) have been shown to induce DISC-mediated apoptosis. Specifically, TRAIL works by activating two death receptors, DR4 and DR5; these bind to FADD, which then interacts with caspase-8 to assemble the DISC. Tumor cells show varying sensitivity to TRAIL modulated apoptosis, depending on the presence of the antiapoptotic FLIP proteins. [5] Additionally, studies in leukemia have indicated that the histone deacetylase inhibitor LAQ824 increases apoptosis by decreasing the expression levels of the c-FLIPs. [6] As such, these inhibitors are promising targets for anti-cancer therapy.

Related Research Articles

<span class="mw-page-title-main">Apoptosis</span> Type of programmed cell death in multicellular organisms

Apoptosis is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemical events lead to characteristic cell changes (morphology) and death. These changes include blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation, DNA fragmentation, and mRNA decay. The average adult human loses 50 to 70 billion cells each day due to apoptosis. For the average human child between 8 and 14 years old, each day the approximate loss is 20 to 30 billion cells.

<span class="mw-page-title-main">Caspase</span> Family of cysteine proteases

Caspases are a family of protease enzymes playing essential roles in programmed cell death. They are named caspases due to their specific cysteine protease activity – a cysteine in its active site nucleophilically attacks and cleaves a target protein only after an aspartic acid residue. As of 2009, there are 12 confirmed caspases in humans and 10 in mice, carrying out a variety of cellular functions.

<span class="mw-page-title-main">Fas ligand</span> Protein-coding gene in the species Homo sapiens

Fas ligand is a type-II transmembrane protein expressed on various types of cells, including cytotoxic T lymphocytes, monocytes, neutrophils, breast epithelial cells, vascular endothelial cells and natural killer (NK) cells. It binds with its receptor, called FAS receptor and plays a crucial role in the regulation of the immune system and in induction of apoptosis, a programmed cell death.

<span class="mw-page-title-main">Death effector domain</span> InterPro Domain

The death-effector domain (DED) is a protein interaction domain found only in eukaryotes that regulates a variety of cellular signalling pathways. The DED domain is found in inactive procaspases and proteins that regulate caspase activation in the apoptosis cascade such as FAS-associating death domain-containing protein (FADD). FADD recruits procaspase 8 and procaspase 10 into a death induced signaling complex (DISC). This recruitment is mediated by a homotypic interaction between the procaspase DED and a second DED that is death effector domain in an adaptor protein that is directly associated with activated TNF receptors. Complex formation allows proteolytic activation of procaspase into the active caspase form which results in the initiation of apoptosis. Structurally the DED domain are a subclass of protein motif known as the death fold and contains 6 alpha helices, that closely resemble the structure of the Death domain (DD).

<span class="mw-page-title-main">TRAIL</span> Mammalian protein

In the field of cell biology, TNF-related apoptosis-inducing ligand (TRAIL), is a protein functioning as a ligand that induces the process of cell death called apoptosis.

<span class="mw-page-title-main">Fas receptor</span> Protein found in humans

The Fas receptor, also known as Fas, FasR, apoptosis antigen 1, cluster of differentiation 95 (CD95) or tumor necrosis factor receptor superfamily member 6 (TNFRSF6), is a protein that in humans is encoded by the FAS gene. Fas was first identified using a monoclonal antibody generated by immunizing mice with the FS-7 cell line. Thus, the name Fas is derived from FS-7-associated surface antigen.

<span class="mw-page-title-main">FADD</span> Human protein and coding gene

FAS-associated death domain protein, also called MORT1, is encoded by the FADD gene on the 11q13.3 region of chromosome 11 in humans.

<span class="mw-page-title-main">Caspase 8</span> Protein found in humans

Caspase-8 is a caspase protein, encoded by the CASP8 gene. It most likely acts upon caspase-3. CASP8 orthologs have been identified in numerous mammals for which complete genome data are available. These unique orthologs are also present in birds.

<span class="mw-page-title-main">Caspase 3</span> Protein found in humans

Caspase-3 is a caspase protein that interacts with caspase-8 and caspase-9. It is encoded by the CASP3 gene. CASP3 orthologs have been identified in numerous mammals for which complete genome data are available. Unique orthologs are also present in birds, lizards, lissamphibians, and teleosts.

<span class="mw-page-title-main">TRADD</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor receptor type 1-associated DEATH domain protein is a protein that in humans is encoded by the TRADD gene.

<span class="mw-page-title-main">Tumor necrosis factor receptor 1</span> Membrane receptor protein found in humans

Tumor necrosis factor receptor 1 (TNFR1), also known as tumor necrosis factor receptor superfamily member 1A (TNFRSF1A) and CD120a, is a ubiquitous membrane receptor that binds tumor necrosis factor-alpha (TNFα).

<span class="mw-page-title-main">Death receptor 4</span> Protein found in humans

Death receptor 4 (DR4), also known as TRAIL receptor 1 (TRAILR1) and tumor necrosis factor receptor superfamily member 10A (TNFRSF10A), is a cell surface receptor of the TNF-receptor superfamily that binds TRAIL and mediates apoptosis.

<span class="mw-page-title-main">TRAF1</span> Protein-coding gene in the species Homo sapiens

TNF receptor-associated factor 1 is a protein that in humans is encoded by the TRAF1 gene.

<span class="mw-page-title-main">Caspase 10</span> Enzyme found in humans

Caspase-10 is an enzyme that, in humans, is encoded by the CASP10 gene.

<span class="mw-page-title-main">Death receptor 5</span> Protein found in humans

Death receptor 5 (DR5), also known as TRAIL receptor 2 (TRAILR2) and tumor necrosis factor receptor superfamily member 10B (TNFRSF10B), is a cell surface receptor of the TNF-receptor superfamily that binds TRAIL and mediates apoptosis.

<span class="mw-page-title-main">RIPK1</span> Enzyme found in humans

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions in a variety of cellular pathways related to both cell survival and death. In terms of cell death, RIPK1 plays a role in apoptosis, necroptosis, and PANoptosis Some of the cell survival pathways RIPK1 participates in include NF-κB, Akt, and JNK.

<span class="mw-page-title-main">Death receptor 3</span> Protein found in humans

Death receptor 3 (DR3), also known as tumor necrosis factor receptor superfamily member 25 (TNFRSF25), is a cell surface receptor of the tumor necrosis factor receptor superfamily which mediates apoptotic signalling and differentiation. Its only known TNFSF ligand is TNF-like protein 1A (TL1A).

<span class="mw-page-title-main">Death domain</span>

The death domain (DD) is a protein interaction module composed of a bundle of six alpha-helices. DD is a subclass of protein motif known as the death fold and is related in sequence and structure to the death effector domain (DED) and the caspase recruitment domain (CARD), which work in similar pathways and show similar interaction properties. DD bind each other forming oligomers. Mammals have numerous and diverse DD-containing proteins. Within these proteins, the DD domains can be found in combination with other domains, including: CARDs, DEDs, ankyrin repeats, caspase-like folds, kinase domains, leucine zippers, leucine-rich repeats (LRR), TIR domains, and ZU5 domains.

<span class="mw-page-title-main">Activation-induced cell death</span>

AICD is programmed cell death caused by the interaction of Fas receptors and Fas ligands. AICD is a negative regulator of activated T lymphocytes that results from repeated stimulation of their T-cell receptors (TCR) and helps to maintain peripheral immune tolerance. Alteration of the process may lead to autoimmune diseases.

Jürg Tschopp was a Swiss biochemist, known for his research on apoptosis and the immunology of inflammation. His greatest achievement was perhaps his team's discovery and scientific description of the inflammasome.

References

  1. 1 2 Kischkel, FC; Hellbardt, S; Behrmann, I; Germer, M; Pawlita, M; Krammer, PH; Peter, ME (Nov 15, 1995). "Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor". The EMBO Journal. 14 (22): 5579–88. doi:10.1002/j.1460-2075.1995.tb00245.x. PMC   394672 . PMID   8521815.
  2. Krueger, A; Schmitz, J; Baumann, S; Krammer, P; Kirchoff, S (Jun 8, 2001). "Cellular FLICE-inhibitory Protein Splice variants Inhibit Different Steps of Caspase-8 Activation at the CD95 Death-inducing Signaling Complex". Journal of Biological Chemistry. 276 (23): 20633–40. doi: 10.1074/jbc.M101780200 . PMID   11279218.
  3. Medema, JP; Scaffidi, C; Kischkel, F; Shevencho, A; Mann, M; Krammer, P; Peter, ME (May 15, 1997). "FLICE is activated by association with the CD95 death-inducing signaling complex (DISC)". The EMBO Journal. 16 (10): 2794–2804. doi:10.1093/emboj/16.10.2794. PMC   1169888 . PMID   9184224.
  4. Muzio, M; Chinnaiyan, A; Kischkel, F; O'Rourke, K; Shevchenko, A; Ni, J; Dixit, V (Jun 14, 1996). "FLICE, A Novel FADD-Homologous ICE/CED-3-like Protease, is Recruited to the CD95 (Fas/APO-1) Death-Inducing Signaling Complex". Cell. 85 (6): 817–27. doi: 10.1016/s0092-8674(00)81266-0 . PMID   8681377.
  5. Xiao, C; Yang, B; Asadi, N; Beguinot, F; Hao, C (Apr 25, 2002). "Tumor Necrosis Factor-related Apoptosis-inducing Ligand-induced Death-inducing Signaling Complex and its Modulation by c-FLIP and PED/PEA-15 in Glioma Cells". The Journal of Biological Chemistry. 277 (28): 25020–25. doi: 10.1074/jbc.M202946200 . PMID   11976344.
  6. Cuo, S; Sigua, C; Tao, J; Bali, P; George, P; Li, Y; Bhalla, K (Apr 1, 2004). "Cotreatment with Histone Deacetylase Inhibitor LAQ824 Enhances Apo-2L/Tumor Necrosis Factor-Related Apoptosis Inducing Ligand-Induced Death Inducing Signaling Complex Activity and Apoptosis of Human Acute Leukemia Cells". Cancer Research. 64 (7): 2580–9. doi:10.1158/0008-5472.can-03-2629. PMID   15059915.