Cysteine protease

Last updated
Cysteine peptidase, CA clan
Papain enzyme.png
Crystal structure of the cysteine peptidase papain in complex with its covalent inhibitor E-64. Rendered from PDB: 1PE6
Identifiers
SymbolPeptidase_C1
Pfam PF00112
Pfam clan CL0125
InterPro IPR000668
SMART SM00645
PROSITE PDOC00126
MEROPS C1
SCOP2 1aec / SCOPe / SUPFAM
OPM superfamily 355
OPM protein 1m6d
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

Cysteine proteases, also known as thiol proteases, are hydrolase enzymes that degrade proteins. These proteases share a common catalytic mechanism that involves a nucleophilic cysteine thiol in a catalytic triad or dyad. [1]

Contents

Discovered by Gopal Chunder Roy in 1873, the first cysteine protease to be isolated and characterized was papain, obtained from Carica papaya. [1] Cysteine proteases are commonly encountered in fruits including the papaya, pineapple, fig and kiwifruit. The proportion of protease tends to be higher when the fruit is unripe. In fact, the latex of dozens of different plant families are known to contain cysteine proteases. [2] Cysteine proteases are used as an ingredient in meat tenderizers.

Classification

The MEROPS protease classification system counts 14 superfamilies plus several currently unassigned families (as of 2013) each containing many families. Each superfamily uses the catalytic triad or dyad in a different protein fold and so represent convergent evolution of the catalytic mechanism.

For superfamilies, P indicates a superfamily containing a mixture of nucleophile class families, and C indicates purely cysteine proteases. superfamily. Within each superfamily, families are designated by their catalytic nucleophile (C denoting cysteine proteases).

Families of cysteine proteases
Superfamily Families Examples
CA C1, C2, C6, C10, C12, C16, C19, C28, C31, C32, C33, C39, C47, C51, C54, C58, C64,

C65, C66, C67, C70, C71, C76, C78, C83, C85, C86, C87, C93, C96, C98, C101

Papain ( Carica papaya ), [3] bromelain ( Ananas comosus ), cathepsin K ( liverwort ) [4] and calpain ( Homo sapiens ) [5]
CDC11, C13, C14, C25, C50, C80, C84 Caspase 1 ( Rattus norvegicus ) and separase ( Saccharomyces cerevisiae )
CEC5, C48, C55, C57, C63, C79 Adenain (human adenovirus type 2)
CFC15 Pyroglutamyl-peptidase I ( Bacillus amyloliquefaciens )
CLC60, C82 Sortase A ( Staphylococcus aureus )
CMC18 Hepatitis C virus peptidase 2 (hepatitis C virus)
CNC9 Sindbis virus-type nsP2 peptidase (sindbis virus)
COC40 Dipeptidyl-peptidase VI ( Lysinibacillus sphaericus )
CPC97 DeSI-1 peptidase ( Mus musculus )
PA C3, C4, C24, C30, C37, C62, C74, C99 TEV protease (tobacco etch virus)
PBC44, C45, C59, C69, C89, C95 Amidophosphoribosyltransferase precursor ( Homo sapiens )
PCC26, C56 Gamma-glutamyl hydrolase ( Rattus norvegicus )
PDC46 Hedgehog protein ( Drosophila melanogaster )
PEP1 DmpA aminopeptidase ( Brucella anthropi )
unassignedC7, C8, C21, C23, C27, C36, C42, C53, C75

Catalytic mechanism

Reaction mechanism of the cysteine protease mediated cleavage of a peptide bond. Cysteinprotease Reaktionsmechanismus.svg
Reaction mechanism of the cysteine protease mediated cleavage of a peptide bond.

The first step in the reaction mechanism by which cysteine proteases catalyze the hydrolysis of peptide bonds is deprotonation of a thiol in the enzyme's active site by an adjacent amino acid with a basic side chain, usually a histidine residue. The next step is nucleophilic attack by the deprotonated cysteine's anionic sulfur on the substrate carbonyl carbon. In this step, a fragment of the substrate is released with an amine terminus, the histidine residue in the protease is restored to its deprotonated form, and a thioester intermediate linking the new carboxy-terminus of the substrate to the cysteine thiol is formed. Therefore, they are also sometimes referred to as thiol proteases. The thioester bond is subsequently hydrolyzed to generate a carboxylic acid moiety on the remaining substrate fragment, while regenerating the free enzyme. [6]

Biological importance

Cysteine proteases play multifaceted roles, virtually in every aspect of physiology and development. In plants they are important in growth and development and in accumulation and mobilization of storage proteins such as in seeds. In addition, they are involved in signalling pathways and in the response to biotic and abiotic stresses. [7] In humans and other animals, they are responsible for senescence and apoptosis (programmed cell death), MHC class II immune responses, prohormone processing, and extracellular matrix remodeling important to bone development. The ability of macrophages and other cells to mobilize elastolytic cysteine proteases to their surfaces under specialized conditions may also lead to accelerated collagen and elastin degradation at sites of inflammation in diseases such as atherosclerosis and emphysema. [8] Several viruses (such as polio and hepatitis C) express their entire genome as a single massive polyprotein and use a protease to cleave it into functional units (for example, tobacco etch virus protease).

Regulation

The activity of cysteine proteases is regulated by a few general mechanisms, which includes the production of zymogens, selective expression, pH modification, cellular compartmentalization, and regulation of their enzymatic activity by endogenous inhibitors, which seemingly is the most efficient mechanism associated with the regulation of the activity of cysteine proteases. [6]

Proteases are usually synthesized as large precursor proteins called zymogens, such as the serine protease precursors trypsinogen and chymotrypsinogen, and the aspartic protease precursor pepsinogen. The protease is activated by removal of an inhibitory segment or protein. Activation occurs once the protease is delivered to a specific intracellular compartment (for example the lysosome) or extracellular environment (for example the stomach). This system prevents the cell that produces the protease from being damaged by it.

Protease inhibitors are usually proteins with domains that enter or block a protease active site to prevent substrate access. In competitive inhibition, the inhibitor binds to the active site, thus preventing enzyme-substrate interaction. In non-competitive inhibition, the inhibitor binds to an allosteric site, which alters the active site and makes it inaccessible to the substrate.

Examples of protease inhibitors include:

Uses

Potential pharmaceuticals

Currently there is no widespread use of cysteine proteases as approved and effective anthelmintics but research into the subject is a promising field of study. Plant cysteine proteases isolated from these plants have been found to have high proteolytic activities that are known to digest nematode cuticles, with very low toxicity. [9] Successful results have been reported against nematodes such as Heligmosomoides bakeri , Trichinella spiralis , Nippostrongylus brasiliensis , Trichuris muris , and Ancylostoma ceylanicum ; the tapeworm Rodentolepis microstoma , and the porcine acanthocephalan parasite Macracanthorhynchus hirundinaceus. [10] A useful property of cysteine proteases is the resistance to acid digestion, allowing possible oral administration. They provide an alternative mechanism of action to current anthelmintics and the development of resistance is thought to be unlikely because it would require a complete change of structure of the helminth cuticle.

In several traditional medicines, the fruits or latex of the papaya, pineapple and fig are widely used for treatment of intestinal worm infections both in humans and livestock.

Other

Cysteine proteases are used as feed additives for livestock to improve the digestibility of proteins and amino acids. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Chymotrypsin</span> Digestive enzyme

Chymotrypsin (EC 3.4.21.1, chymotrypsins A and B, alpha-chymar ophth, avazyme, chymar, chymotest, enzeon, quimar, quimotrase, alpha-chymar, alpha-chymotrypsin A, alpha-chymotrypsin) is a digestive enzyme component of pancreatic juice acting in the duodenum, where it performs proteolysis, the breakdown of proteins and polypeptides. Chymotrypsin preferentially cleaves peptide amide bonds where the side chain of the amino acid N-terminal to the scissile amide bond (the P1 position) is a large hydrophobic amino acid (tyrosine, tryptophan, and phenylalanine). These amino acids contain an aromatic ring in their side chain that fits into a hydrophobic pocket (the S1 position) of the enzyme. It is activated in the presence of trypsin. The hydrophobic and shape complementarity between the peptide substrate P1 side chain and the enzyme S1 binding cavity accounts for the substrate specificity of this enzyme. Chymotrypsin also hydrolyzes other amide bonds in peptides at slower rates, particularly those containing leucine at the P1 position.

<span class="mw-page-title-main">Protease</span> Enzyme that cleaves other proteins into smaller peptides

A protease is an enzyme that catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products. They do this by cleaving the peptide bonds within proteins by hydrolysis, a reaction where water breaks bonds. Proteases are involved in numerous biological pathways, including digestion of ingested proteins, protein catabolism, and cell signaling.

Matrix metalloproteinases (MMPs), also known as matrix metallopeptidases or matrixins, are metalloproteinases that are calcium-dependent zinc-containing endopeptidases; other family members are adamalysins, serralysins, and astacins. The MMPs belong to a larger family of proteases known as the metzincin superfamily.

alpha-2-Macroglobulin Large plasma protein found in the blood

α2-Macroglobulin (α2M) or alpha-2-macroglobulin is a large plasma protein found in the blood. It is mainly produced by the liver, and also locally synthesized by macrophages, fibroblasts, and adrenocortical cells. In humans it is encoded by the A2M gene.

In biology and biochemistry, protease inhibitors, or antiproteases, are molecules that inhibit the function of proteases. Many naturally occurring protease inhibitors are proteins.

<span class="mw-page-title-main">Serine protease</span> Class of enzymes

Serine proteases are enzymes that cleave peptide bonds in proteins. Serine serves as the nucleophilic amino acid at the (enzyme's) active site. They are found ubiquitously in both eukaryotes and prokaryotes. Serine proteases fall into two broad categories based on their structure: chymotrypsin-like (trypsin-like) or subtilisin-like.

<span class="mw-page-title-main">Papain</span> Widely used enzyme extracted from papayas

Papain, also known as papaya proteinase I, is a cysteine protease enzyme present in papaya and mountain papaya. It is the namesake member of the papain-like protease family.

<span class="mw-page-title-main">Catalytic triad</span> Set of three coordinated amino acids

A catalytic triad is a set of three coordinated amino acids that can be found in the active site of some enzymes. Catalytic triads are most commonly found in hydrolase and transferase enzymes. An acid-base-nucleophile triad is a common motif for generating a nucleophilic residue for covalent catalysis. The residues form a charge-relay network to polarise and activate the nucleophile, which attacks the substrate, forming a covalent intermediate which is then hydrolysed to release the product and regenerate free enzyme. The nucleophile is most commonly a serine or cysteine amino acid, but occasionally threonine or even selenocysteine. The 3D structure of the enzyme brings together the triad residues in a precise orientation, even though they may be far apart in the sequence.

<span class="mw-page-title-main">Aspartic protease</span>

Aspartic proteases are a catalytic type of protease enzymes that use an activated water molecule bound to one or more aspartate residues for catalysis of their peptide substrates. In general, they have two highly conserved aspartates in the active site and are optimally active at acidic pH. Nearly all known aspartyl proteases are inhibited by pepstatin.

<span class="mw-page-title-main">Actinidain</span> Class of enzymes

Actinidain is a type of cysteine protease enzyme found in fruits including kiwifruit, pineapple, mango, banana, figs, and papaya. This enzyme is part of the peptidase C1 family of papain-like proteases.

MEROPS is an online database for peptidases and their inhibitors. The classification scheme for peptidases was published by Rawlings & Barrett in 1993, and that for protein inhibitors by Rawlings et al. in 2004. The most recent version, MEROPS 12.4, was released in late October 2021.

<span class="mw-page-title-main">Chymopapain</span> Enzyme

Chymopapain is a proteolytic enzyme isolated from the latex of papaya. It is a cysteine protease which belongs to the papain-like protease (PLCP) group. Because of its proteolytic activity, it is the main molecule in the process of chemonucleolysis, used in some procedures like the treatment of herniated lower lumbar discs in the spine by a nonsurgical method.

<span class="mw-page-title-main">Threonine protease</span> Class of enzymes

Threonine proteases are a family of proteolytic enzymes harbouring a threonine (Thr) residue within the active site. The prototype members of this class of enzymes are the catalytic subunits of the proteasome, however, the acyltransferases convergently evolved the same active site geometry and mechanism.

Caricain is an enzyme. This enzyme catalyses the following chemical reaction: Hydrolysis of proteins with broad specificity for peptide bonds, similar to those of papain and chymopapain

<span class="mw-page-title-main">Zingibain</span> Cysteine protease enzyme

Zingibain, zingipain, or ginger protease is a cysteine protease enzyme found in ginger rhizomes. It catalyses the preferential cleavage of peptides with a proline residue at the P2 position. It has two distinct forms, ginger protease I (GP-I) and ginger protease II (GP-II).

A protein superfamily is the largest grouping (clade) of proteins for which common ancestry can be inferred. Usually this common ancestry is inferred from structural alignment and mechanistic similarity, even if no sequence similarity is evident. Sequence homology can then be deduced even if not apparent. Superfamilies typically contain several protein families which show sequence similarity within each family. The term protein clan is commonly used for protease and glycosyl hydrolases superfamilies based on the MEROPS and CAZy classification systems.

<span class="mw-page-title-main">PA clan of proteases</span>

The PA clan is the largest group of proteases with common ancestry as identified by structural homology. Members have a chymotrypsin-like fold and similar proteolysis mechanisms but can have identity of <10%. The clan contains both cysteine and serine proteases. PA clan proteases can be found in plants, animals, fungi, eubacteria, archaea and viruses.

<span class="mw-page-title-main">Glutamic protease</span>

Glutamic proteases are a group of proteolytic enzymes containing a glutamic acid residue within the active site. This type of protease was first described in 2004 and became the sixth catalytic type of protease. Members of this group of protease had been previously assumed to be an aspartate protease, but structural determination showed it to belong to a novel protease family. The first structure of this group of protease was scytalidoglutamic peptidase, the active site of which contains a catalytic dyad, glutamic acid (E) and glutamine (Q), which give rise to the name eqolisin. This group of proteases are found primarily in pathogenic fungi affecting plant and human.

Asparagine peptide lyase are one of the seven groups in which proteases, also termed proteolytic enzymes, peptidases, or proteinases, are classified according to their catalytic residue. The catalytic mechanism of the asparagine peptide lyases involves an asparagine residue acting as nucleophile to perform a nucleophilic elimination reaction, rather than hydrolysis, to catalyse the breaking of a peptide bond.

<span class="mw-page-title-main">Papain-like protease</span> Protein family of cysteine protease enzymes

Papain-like proteases are a large protein family of cysteine protease enzymes that share structural and enzymatic properties with the group's namesake member, papain. They are found in all domains of life. In animals, the group is often known as cysteine cathepsins or, in older literature, lysosomal peptidases. In the MEROPS protease enzyme classification system, papain-like proteases form Clan CA. Papain-like proteases share a common catalytic dyad active site featuring a cysteine amino acid residue that acts as a nucleophile.

References

  1. 1 2 Rawat, Aadish; Roy, Mrinalini; Jyoti, Anupam; Kaushik, Sanket; Verma, Kuldeep; Srivastava, Vijay Kumar (August 2021). "Cysteine proteases: Battling pathogenic parasitic protozoans with omnipresent enzymes". Microbiological Research. 249: 126784. doi: 10.1016/j.micres.2021.126784 . ISSN   1618-0623. PMID   33989978. S2CID   234597200.
  2. Domsalla A, Melzig MF (June 2008). "Occurrence and properties of proteases in plant latices". Planta Medica. 74 (7): 699–711. doi: 10.1055/s-2008-1074530 . PMID   18496785.
  3. Mitchel RE, Chaiken IM, Smith EL (July 1970). "The complete amino acid sequence of papain. Additions and corrections". The Journal of Biological Chemistry. 245 (14): 3485–92. doi: 10.1016/S0021-9258(18)62954-0 . PMID   5470818.
  4. Sierocka I, Kozlowski LP, Bujnicki JM, Jarmolowski A, Szweykowska-Kulinska Z (June 2014). "Female-specific gene expression in dioecious liverwort Pellia endiviifolia is developmentally regulated and connected to archegonia production". BMC Plant Biology. 14: 168. doi: 10.1186/1471-2229-14-168 . PMC   4074843 . PMID   24939387.
  5. Sorimachi H, Ohmi S, Emori Y, Kawasaki H, Saido TC, Ohno S, et al. (May 1990). "A novel member of the calcium-dependent cysteine protease family". Biological Chemistry Hoppe-Seyler. 371 Suppl: 171–6. PMID   2400579.
  6. 1 2 Roy, Mrinalini; Rawat, Aadish; Kaushik, Sanket; Jyoti, Anupam; Srivastava, Vijay Kumar (May 2022). "Endogenous cysteine protease inhibitors in upmost pathogenic parasitic protozoa". Microbiological Research. 261: 127061. doi: 10.1016/j.micres.2022.127061 . PMID   35605309. S2CID   248741177.
  7. Grudkowska M, Zagdańska B (2004). "Multifunctional role of plant cysteine proteinases". Acta Biochimica Polonica. 51 (3): 609–24. doi: 10.18388/abp.2004_3547 . PMID   15448724.
  8. Chapman HA, Riese RJ, Shi GP (1997). "Emerging roles for cysteine proteases in human biology". Annual Review of Physiology. 59: 63–88. doi:10.1146/annurev.physiol.59.1.63. PMID   9074757.
  9. Stepek G, Behnke JM, Buttle DJ, Duce IR (July 2004). "Natural plant cysteine proteinases as anthelmintics?". Trends in Parasitology. 20 (7): 322–7. doi:10.1016/j.pt.2004.05.003. PMID   15193563.
  10. Behnke JM, Buttle DJ, Stepek G, Lowe A, Duce IR (September 2008). "Developing novel anthelmintics from plant cysteine proteinases". Parasites & Vectors. 1 (1): 29. doi: 10.1186/1756-3305-1-29 . PMC   2559997 . PMID   18761736.
  11. O'Keefe, Terrence (6 April 2012). "Protease enzymes improve amino acid digestibility". Wattagnet. Retrieved 6 January 2018.