Cathepsin C

Last updated
CTSC
Protein CTSC PDB 1k3b.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases CTSC , CPPI, DPP-I, DPP1, DPPI, HMS, JP, JPD, PALS, PDON1, PLS, cathepsin C
External IDs OMIM: 602365; MGI: 109553; HomoloGene: 1373; GeneCards: CTSC; OMA:CTSC - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_148170
NM_001114173
NM_001814

NM_009982
NM_001311790

RefSeq (protein)

NP_001107645
NP_001805
NP_680475

NP_001298719
NP_034112

Location (UCSC) Chr 11: 88.27 – 88.36 Mb Chr 7: 87.93 – 87.96 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse
Cathepsin C exclusion domain
PDB 2djg EBI.jpg
re-determination of the native structure of human dipeptidyl peptidase i (cathepsin c)
Identifiers
SymbolCathepsinC_exc
Pfam PF08773
InterPro IPR014882
SCOP2 1k3b / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

Cathepsin C (CTSC) also known as dipeptidyl peptidase I (DPP-I) is a lysosomal exo-cysteine protease belonging to the peptidase C1 protein family, a subgroup of the cysteine cathepsins. In humans, it is encoded by the CTSC gene. [5] [6]

Function

Cathepsin C appears to be a central coordinator for activation of many serine proteases in immune/inflammatory cells.

Cathepsin C catalyses excision of dipeptides from the N-terminus of protein and peptide substrates, except if (i) the amino group of the N-terminus is blocked, (ii) the site of cleavage is on either side of a proline residue, (iii) the N-terminal residue is lysine or arginine, or (iv) the structure of the peptide or protein prevents further digestion from the N-terminus.

Structure

The cDNAs encoding rat, human, murine, bovine, dog and two Schistosome cathepsin Cs have been cloned and sequenced and show that the enzyme is highly conserved. [7] The human and rat cathepsin C cDNAs encode precursors (prepro-cathepsin C) comprising signal peptides of 24 residues, pro-regions of 205 (rat cathepsin C) or 206 (human cathepsin C) residues and catalytic domains of 233 residues which contain the catalytic residues and are 30-40% identical to the mature amino acid sequences of papain and a number of other cathepsins including cathepsins, B, H, K, L, and S. [8]

The translated prepro-cathepsin C is processed into the mature form by at least four cleavages of the polypeptide chain. The signal peptide is removed during translocation or secretion of the pro-enzyme (pro-cathepsin C) and a large N-terminal proregion fragment (also known as the exclusion domain), [9] which is retained in the mature enzyme, is separated from the catalytic domain by excision of a minor C-terminal part of the pro-region, called the activation peptide. A heavy chain of about 164 residues and a light chain of about 69 residues are generated by cleavage of the catalytic domain.

Unlike the other members of the papain family, mature cathepsin C consists of four subunits, each composed of the N-terminal proregion fragment, the heavy chain and the light chain. Both the pro-region fragment and the heavy chain are glycosylated.

Clinical significance

Defects in the encoded protein have been shown to be a cause of Papillon-Lefevre disease, [10] [11] an autosomal recessive disorder characterized by palmoplantar keratosis and periodontitis.

Cathepsin C functions as a key enzyme in the activation of granule serine peptidases in inflammatory cells, such as elastase and cathepsin G in neutrophils cells and chymase and tryptase in mast cells. In many inflammatory diseases, such as rheumatoid arthritis, chronic obstructive pulmonary disease (COPD), inflammatory bowel disease, asthma, sepsis, and cystic fibrosis, a significant portion of the pathogenesis is caused by increased activity of some of these inflammatory proteases. Once activated by cathepsin C, the proteases are capable of degrading various extracellular matrix components, which can lead to tissue damage and chronic inflammation.

Related Research Articles

<span class="mw-page-title-main">Enamelin</span> Mammalian protein found in Homo sapiens

Enamelin is an enamel matrix protein (EMPs), that in humans is encoded by the ENAM gene. It is part of the non-amelogenins, which comprise 10% of the total enamel matrix proteins. It is one of the key proteins thought to be involved in amelogenesis. The formation of enamel's intricate architecture is thought to be rigorously controlled in ameloblasts through interactions of various organic matrix protein molecules that include: enamelin, amelogenin, ameloblastin, tuftelin, dentine sialophosphoprotein, and a variety of enzymes. Enamelin is the largest protein (~168kDa) in the enamel matrix of developing teeth and is the least abundant of total enamel matrix proteins. It is present predominantly at the growing enamel surface.

<span class="mw-page-title-main">Cathepsin S</span> Protein-coding gene in the species Homo sapiens

Cathepsin S is a protein that in humans is encoded by the CTSS gene. Transcript variants utilizing alternative polyadenylation signals exist for this gene.

<span class="mw-page-title-main">Papillon–Lefèvre syndrome</span> Medical condition

Papillon–Lefèvre syndrome (PLS), also known as palmoplantar keratoderma with periodontitis, is an autosomal recessive genetic disorder caused by a deficiency in cathepsin C.

<span class="mw-page-title-main">Twist-related protein 1</span> Transcription factor protein

Twist-related protein 1 (TWIST1) also known as class A basic helix–loop–helix protein 38 (bHLHa38) is a basic helix-loop-helix transcription factor that in humans is encoded by the TWIST1 gene.

<span class="mw-page-title-main">Cathepsin G</span> Protein-coding gene in the species Homo sapiens

Cathepsin G is a protein that in humans is encoded by the CTSG gene. It is one of the three serine proteases of the chymotrypsin family that are stored in the azurophil granules, and also a member of the peptidase S1 protein family. Cathepsin G plays an important role in eliminating intracellular pathogens and breaking down tissues at inflammatory sites, as well as in anti-inflammatory response.

<span class="mw-page-title-main">Cathepsin D</span> Protein-coding gene in the species Homo sapiens

Cathepsin D is a protein that in humans is encoded by the CTSD gene. This gene encodes a lysosomal aspartyl protease composed of a protein dimer of disulfide-linked heavy and light chains, both produced from a single protein precursor. Cathepsin D is an aspartic endo-protease that is ubiquitously distributed in lysosomes. The main function of cathepsin D is to degrade proteins and activate precursors of bioactive proteins in pre-lysosomal compartments. This proteinase, which is a member of the peptidase A1 family, has a specificity similar to but narrower than that of pepsin A. Transcription of the CTSD gene is initiated from several sites, including one that is a start site for an estrogen-regulated transcript. Mutations in this gene are involved in the pathogenesis of several diseases, including breast cancer and possibly Alzheimer disease. Homozygous deletion of the CTSD gene leads to early lethality in the postnatal phase. Deficiency of CTSD gene has been reported an underlying cause of neuronal ceroid lipofuscinosis (NCL).

<span class="mw-page-title-main">Cathepsin L1</span> Protein-coding gene in the species Homo sapiens

Cathepsin L1 is a protein that in humans is encoded by the CTSL1 gene. The protein is a cysteine cathepsin, a lysosomal cysteine protease that plays a major role in intracellular protein catabolism.

<span class="mw-page-title-main">SPINK1</span> Protein-coding gene in the species Homo sapiens

Pancreatic secretory trypsin inhibitor (PSTI) also known as serine protease inhibitor Kazal-type 1 (SPINK1) or tumor-associated trypsin inhibitor (TATI) is a protein that in humans is encoded by the SPINK1 gene.

<span class="mw-page-title-main">Cystatin B</span> Protein-coding gene in the species Homo sapiens

Cystatin-B is a protein that in humans is encoded by the CSTB gene.

<span class="mw-page-title-main">Cathepsin E</span> Protein-coding gene in the species Homo sapiens

Cathepsin E is an enzyme that in humans is encoded by the CTSE gene. The enzyme is also known as slow-moving proteinase, erythrocyte membrane aspartic proteinase, SMP, EMAP, non-pepsin proteinase, cathepsin D-like acid proteinase, cathepsin E-like acid proteinase, cathepsin D-type proteinase) is an enzyme.

<span class="mw-page-title-main">KLK4</span> Mammalian protein found in Homo sapiens

Kallikrein-related peptidase 4 is a protein which in humans is encoded by the KLK4 gene.

<span class="mw-page-title-main">Cathepsin H</span> Protein-coding gene in the species Homo sapiens

Cathepsin H is a protein that in humans is encoded by the CTSH gene.

<span class="mw-page-title-main">LEKTI</span> Protein-coding gene in the species Homo sapiens

Lympho-epithelial Kazal-type-related inhibitor (LEKTI) also known as serine protease inhibitor Kazal-type 5 (SPINK5) is a protein that in humans is encoded by the SPINK5 gene.

<span class="mw-page-title-main">DPP6</span> Protein-coding gene in the species Homo sapiens

Dipeptidyl aminopeptidase-like protein 6 is a protein that in humans is encoded by the DPP6 gene.

<span class="mw-page-title-main">Cathepsin Z</span> Protein-coding gene in the species Homo sapiens

Cathepsin Z, also called cathepsin X or cathepsin P, is a protein that in humans is encoded by the CTSZ gene. It is a member of the cysteine cathepsin family of cysteine proteases, which has 11 members. As one of the 11 cathepsins, cathepsin Z contains distinctive features from others. Cathepsin Z has been reported involved in cancer malignancy and inflammation.

<span class="mw-page-title-main">DPP10</span> Protein-coding gene in the species Homo sapiens

Inactive dipeptidyl peptidase 10 is a protein that in humans is encoded by the DPP10 gene. Alternate transcriptional splice variants, encoding different isoforms, have been characterized.

<span class="mw-page-title-main">DPP9</span> Protein-coding gene in humans

Dipeptidyl peptidase 9 is an enzyme that in humans is encoded by the DPP9 gene.

<span class="mw-page-title-main">COX15</span> Protein-coding gene in the species Homo sapiens

Cytochrome c oxidase assembly protein COX15 homolog (COX15), also known as heme A synthase, is a protein that in humans is encoded by the COX15 gene. This protein localizes to the inner mitochondrial membrane and involved in heme A biosynthesis. COX15 is also part of a three-component mono-oxygenase that catalyses the hydroxylation of the methyl group at position eight of the protoheme molecule. Mutations in this gene has been reported in patients with hypertrophic cardiomyopathy as well as Leigh syndrome, and characterized by delayed onset of symptoms, hypotonia, feeding difficulties, failure to thrive, motor regression, and brain stem signs.

<span class="mw-page-title-main">Clp protease family</span> A protein-targeting ATP-dependent enzyme family.

In molecular biology, the CLP protease family is a family of serine peptidases belong to the MEROPS peptidase family S14. ClpP is an ATP-dependent protease that cleaves a number of proteins, such as casein and albumin. It exists as a heterodimer of ATP-binding regulatory A and catalytic P subunits, both of which are required for effective levels of protease activity in the presence of ATP, although the P subunit alone does possess some catalytic activity.

<span class="mw-page-title-main">Papain-like protease</span> Protein family of cysteine protease enzymes

Papain-like proteases are a large protein family of cysteine protease enzymes that share structural and enzymatic properties with the group's namesake member, papain. They are found in all domains of life. In animals, the group is often known as cysteine cathepsins or, in older literature, lysosomal peptidases. In the MEROPS protease enzyme classification system, papain-like proteases form Clan CA. Papain-like proteases share a common catalytic dyad active site featuring a cysteine amino acid residue that acts as a nucleophile.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000109861 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000030560 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: CTSC cathepsin C".
  6. Paris A, Strukelj B, Pungercar J, Renko M, Dolenc I, Turk V (Aug 1995). "Molecular cloning and sequence analysis of human preprocathepsin C". FEBS Letters. 369 (2–3): 326–30. Bibcode:1995FEBSL.369..326P. doi:10.1016/0014-5793(95)00777-7. PMID   7649281. S2CID   45737414.
  7. Hola-Jamriska L, Tort JF, Dalton JP, Day SR, Fan J, Aaskov J, Brindley PJ (Aug 1998). "Cathepsin C from Schistosoma japonicum--cDNA encoding the preproenzyme and its phylogenetic relationships". European Journal of Biochemistry. 255 (3): 527–34. doi: 10.1046/j.1432-1327.1998.2550527.x . PMID   9738890.
  8. Kominami E, Ishido K, Muno D, Sato N (Jul 1992). "The primary structure and tissue distribution of cathepsin C". Biological Chemistry Hoppe-Seyler. 373 (7): 367–73. doi:10.1515/bchm3.1992.373.2.367. PMID   1515062.
  9. Turk D, Janjić V, Stern I, Podobnik M, Lamba D, Dahl SW, Lauritzen C, Pedersen J, Turk V, Turk B (Dec 2001). "Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases". The EMBO Journal. 20 (23): 6570–82. doi:10.1093/emboj/20.23.6570. PMC   125750 . PMID   11726493.
  10. Wani AA, Devkar N, Patole MS, Shouche YS (Feb 2006). "Description of two new cathepsin C gene mutations in patients with Papillon-Lefèvre syndrome". Journal of Periodontology. 77 (2): 233–7. doi:10.1902/jop.2006.050124. PMID   16460249.
  11. Meade JL, de Wynter EA, Brett P, Sharif SM, Woods CG, Markham AF, Cook GP (May 2006). "A family with Papillon-Lefevre syndrome reveals a requirement for cathepsin C in granzyme B activation and NK cell cytolytic activity". Blood. 107 (9): 3665–8. doi: 10.1182/blood-2005-03-1140 . PMID   16410452.

Further reading