Tripeptidyl peptidase I

Last updated
TPP1
3EE6.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases TPP1 , CLN2, LPIC, SCAR7, TPP-1, GIG1, Tripeptidyl peptidase I, tripeptidyl peptidase 1
External IDs OMIM: 607998 MGI: 1336194 HomoloGene: 335 GeneCards: TPP1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000391

NM_009906

RefSeq (protein)

NP_000382

NP_034036

Location (UCSC) Chr 11: 6.61 – 6.62 Mb Chr 7: 105.39 – 105.4 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Tripeptidyl-peptidase 1, also known as Lysosomal pepstatin-insensitive protease, is an enzyme that in humans is encoded by the TPP1 gene. [5] [6] TPP1 should not be confused with the TPP1 shelterin protein which protects telomeres and is encoded by the ACD gene. [7] Mutations in the TPP1 gene leads to late infantile neuronal ceroid lipofuscinosis. [8]

Contents

Structure

Gene

The human gene TPP1 encodes a member of the sedolisin family of serine proteases. The human gene has 13 exons and locates at the chromosome band 11p15. [6]

Protein

The human TPP1 is 61kDa in size and composed of 563 amino acids. An isoform of 34.5kDa and 320 amino acids is generated by alternative splicing and a peptide fragment of 1-243 amino acid is missing. [9] TPP1 contains a globular structure with a subtilisin-like fold, a Ser475-Glu272-Asp360 catalytic triad. It also contains an octahedrally coordinated Ca2+-binding site that are characteristic features of the S53 sedolisin family of peptidases. Unlike other S53 peptidases, it has steric constraints on the P4 substrate pocket, which might contribute to its preferential cleavage of tripeptides from the unsubstituted N-terminus of proteins. Two alternative conformations of the catalytic Asp276 are associated with the activation status of TPP1. [10]

Function

High expression of TPP1 is found in bone marrow, placenta, lung, pineal and lymphocytes. The protease functions in the lysosome to cleave N-terminal tripeptides from substrates and has weaker endopeptidase activity. It is synthesized as a catalytically inactive enzyme which is activated and autoproteolyzed upon acidification.

Clinical significance

The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders with pathological phenotypes that auto fluorescent lipopigments present in neurons and other cell types. Over the past two decades, accumulating evidences indicates that NCLs are caused by mutations in eight different genes, including genes encoding several soluble proteins (cathepsin D, PPT1, and TPP1). [11] Mutations of gene TPP1 result in late-infantile neuronal ceroid lipofuscinosis which is associated with the failure to degrade specific neuropeptides and a subunit of ATP synthase in the lysosome. [12] Mutations in the TPP1 gene lead to late infantile neuronal ceroid lipofuscinosis, a fatal neurodegenerative disease of childhood. [10] It has been demonstrated that a single injection of intravitreal implantation of autologous bone marrow derived stem cells transduced with a TPP1 expression construct at an early stage in the disease progression could substantially inhibit the development of disease-related retinal function deficits and structural changes. This result implies that ex vivo gene therapy using autologous stem cells may be an effective means of achieving sustained delivery of therapeutic compounds to tissues such as the retina for which systemic administration would be ineffective. [13]

Related Research Articles

<span class="mw-page-title-main">Lysosomal storage disease</span> Medical condition

Lysosomal storage diseases are a group of over 70 rare inherited metabolic disorders that result from defects in lysosomal function. Lysosomes are sacs of enzymes within cells that digest large molecules and pass the fragments on to other parts of the cell for recycling. This process requires several critical enzymes. If one of these enzymes is defective due to a mutation, the large molecules accumulate within the cell, eventually killing it.

Batten disease is a fatal disease of the nervous system that typically begins in childhood. Onset of symptoms is usually between 5 and 10 years of age. Often, it is autosomal recessive. It is the common name for a group of disorders called the neuronal ceroid lipofuscinoses (NCLs).

<span class="mw-page-title-main">Neuronal ceroid lipofuscinosis</span> Medical condition

Neuronal ceroid lipofuscinosis is the general name for a family of at least eight genetically separate neurodegenerative lysosomal storage diseases that result from excessive accumulation of lipopigments (lipofuscin) in the body's tissues. These lipopigments are made up of fats and proteins. Their name comes from the word stem "lipo-", which is a variation on lipid, and from the term "pigment", used because the substances take on a greenish-yellow color when viewed under an ultraviolet light microscope. These lipofuscin materials build up in neuronal cells and many organs, including the liver, spleen, myocardium, and kidneys.

Infantile neuronal ceroid lipofuscinoses (INCL) or Santavuori disease or Hagberg-Santavuori disease or Santavuori-Haltia disease or Infantile Finnish type neuronal ceroid lipofuscinosis or Balkan disease is a form of NCL and inherited as a recessive autosomal genetic trait. The disorder is progressive, degenerative and fatal, extremely rare worldwide – with approximately 60 official cases reported by 1982, perhaps 100 with the condition in total today – but relatively common in Finland due to the local founder effect.

<span class="mw-page-title-main">Battenin</span> Protein-coding gene in the species Homo sapiens

Battenin is a protein that in humans is encoded by the CLN3 gene located on chromosome 16. Battenin is not clustered into any Pfam clan, but it is included in the TCDB suggesting that it is a transporter. In humans, it belongs to the atypical SLCs due to its structural and phylogenetic similarity to other SLC transporters.

<span class="mw-page-title-main">Cathepsin A</span>

Cathepsin A is an enzyme that is classified both as a cathepsin and a carboxypeptidase. In humans, it is encoded by the CTSA gene.

<span class="mw-page-title-main">Palmitoyl(protein) hydrolase</span>

Palmitoyl protein hydrolase/thioesterases is an enzyme (EC 3.1.2.22) that removes thioester-linked fatty acyl groups such as palmitate from modified cysteine residues in proteins or peptides during lysosomal degradation. It catalyzes the reaction

<span class="mw-page-title-main">Cathepsin D</span> Protein-coding gene in the species Homo sapiens

Cathepsin D is a protein that in humans is encoded by the CTSD gene. This gene encodes a lysosomal aspartyl protease composed of a protein dimer of disulfide-linked heavy and light chains, both produced from a single protein precursor. Cathepsin D is an aspartic endo-protease that is ubiquitously distributed in lysosomes. The main function of cathepsin D is to degrade proteins and activate precursors of bioactive proteins in pre-lysosomal compartments. This proteinase, which is a member of the peptidase A1 family, has a specificity similar to but narrower than that of pepsin A. Transcription of the CTSD gene is initiated from several sites, including one that is a start site for an estrogen-regulated transcript. Mutations in this gene are involved in the pathogenesis of several diseases, including breast cancer and possibly Alzheimer disease. Homozygous deletion of the CTSD gene leads to early lethality in the postnatal phase. Deficiency of CTSD gene has been reported an underlying cause of neuronal ceroid lipofuscinosis (NCL).

<span class="mw-page-title-main">Granulin</span> Protein-coding gene in humans

Granulin is a protein that in humans is encoded by the GRN gene. Each granulin protein is cleaved from the precursor progranulin, a 593 amino-acid-long and 68.5 kDa protein. While the function of progranulin and granulin have yet to be determined, both forms of the protein have been implicated in development, inflammation, cell proliferation and protein homeostasis. The 2006 discovery of the GRN mutation in a population of patients with frontotemporal dementia has spurred much research in uncovering the function and involvement in disease of progranulin in the body. While there is a growing body of research on progranulin's role in the body, studies on specific granulin residues are still limited.

<span class="mw-page-title-main">CLN6</span> Protein-coding gene in humans

Ceroid-lipofuscinosis neuronal protein 6 is a protein that in humans is encoded by the CLN6 gene.

<span class="mw-page-title-main">CLN5</span> Protein-coding gene in humans

Ceroid-lipofuscinosis neuronal protein 5 is a protein that in humans is encoded by the CLN5 gene.

<span class="mw-page-title-main">CLN8</span> Protein-coding gene in humans

Protein CLN8 is a protein that in humans is encoded by the CLN8 gene.

<span class="mw-page-title-main">PPT1</span> Protein-coding gene in the species Homo sapiens

Palmitoyl-protein thioesterase 1 (PPT-1), also known as palmitoyl-protein hydrolase 1, is an enzyme that in humans is encoded by the PPT1 gene.

<span class="mw-page-title-main">Jansky–Bielschowsky disease</span> Medical condition

Jansky–Bielschowsky disease is an extremely rare autosomal recessive genetic disorder that is part of the neuronal ceroid lipofuscinosis (NCL) family of neurodegenerative disorders. It is caused by the accumulation of lipopigments in the body due to a deficiency in tripeptidyl peptidase I as a result of a mutation in the TPP1 gene. Symptoms appear between ages 2 and 4 and consist of typical neurodegenerative complications: loss of muscle function (ataxia), drug resistant seizures (epilepsy), apraxia, development of muscle twitches (myoclonus), and vision impairment. This late-infantile form of the disease progresses rapidly once symptoms are onset and ends in death between age 8 and teens. The prevalence of Jansky–Bielschowsky disease is unknown; however, NCL collectively affects an estimated 1 in 100,000 individuals worldwide. Jansky–Bielschowsky disease is related to late-infantile Batten disease and LINCL, and is under the umbrella of neuronal ceroid lipofuscinosis.

A Finnish heritage disease is a genetic disease or disorder that is significantly more common in people whose ancestors were ethnic Finns, natives of Finland and Northern Sweden (Meänmaa) and Northwest Russia. There are 36 rare diseases regarded as Finnish heritage diseases. The diseases are not restricted to Finns; they are genetic diseases with far wider distribution in the world, but due to founder effects and genetic isolation they are more common in Finns.

<span class="mw-page-title-main">MFSD8</span> Protein-coding gene in the species Homo sapiens

Major facilitator superfamily domain containing 8 also called MFSD8 is a protein that in humans is encoded by the MFSD8 gene. MFSD8 is an atypical SLC, thus a predicted SLC transporter. It clusters phylogenetically to the Atypical MFS Transporter family 2 (AMTF2).

<span class="mw-page-title-main">KCTD7</span> Protein-coding gene in the species Homo sapiens

Potassium channel tetramerisation domain containing 7 is a protein in humans that is encoded by the KCTD7 gene. Alternative splicing results in multiple transcript variants.

Kufs disease is one of many diseases categorized under a disorder known as neuronal ceroid lipofuscinosis (NCLs) or Batten disease. NCLs are broadly described to create problems with vision, movement and cognitive function. Among all NCLs diseases, Kufs is the only one that does not affect vision, and although this is a distinguishing factor of Kufs, NCLs are typically differentiated by the age at which they appear in a patient

Cerliponase alfa, marketed as Brineura, is an enzyme replacement treatment for Batten disease, a neurodegenerative lysosomal storage disease. Specifically, Cerliponase alfa is meant to slow loss of motor function in symptomatic children over three years old with late infantile neuronal ceroid lipofuscinosis type 2 (CLN2). The disease is also known as tripeptidyl peptidase-1 (TPP1) deficiency, a soluble lysosomal enzyme deficiency. Approved by the United States Food and Drug Administration (FDA) on 27 April 2017, this is the first treatment for a neuronal ceroid lipofuscinosis of its kind, acting to slow disease progression rather than palliatively treat symptoms by giving patients the TPP1 enzyme they are lacking.

Sara Elizabeth Mole Crowley is a Professor of Molecular Cell Biology and Provost's Envoy for Gender Equality at University College London and the Great Ormond Street Hospital. She works on diseases caused by genetic changes, in particular neurodegenerative diseases that impact children.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000166340 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000030894 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Liu CG, Sleat DE, Donnelly RJ, Lobel P (June 1998). "Structural organization and sequence of CLN2, the defective gene in classical late infantile neuronal ceroid lipofuscinosis". Genomics. 50 (2): 206–12. doi:10.1006/geno.1998.5328. PMID   9653647.
  6. 1 2 "Entrez Gene: TPP1 tripeptidyl peptidase I".
  7. "ACD ACD, shelterin complex subunit and telomerase recruitment factor [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2017-02-03.
  8. Bukina AM, Tsvetkova IV, Semiachkina AN, Il'ina ES (Nov 2002). "[Tripeptidyl peptidase 1 deficiency in neuronal ceroid lipofuscinosis. A novel mutation]". Voprosy Medit︠s︡inskoĭ Khimii. 48 (6): 594–8. PMID   12698559.
  9. "Uniprot: O14773 - TPP1_HUMAN".
  10. 1 2 Pal A, Kraetzner R, Gruene T, Grapp M, Schreiber K, Grønborg M, Urlaub H, Becker S, Asif AR, Gärtner J, Sheldrick GM, Steinfeld R (February 2009). "Structure of tripeptidyl-peptidase I provides insight into the molecular basis of late infantile neuronal ceroid lipofuscinosis". The Journal of Biological Chemistry. 284 (6): 3976–84. doi: 10.1074/jbc.M806947200 . hdl: 11858/00-001M-0000-0012-D8E3-A . PMID   19038966.
  11. Getty AL, Pearce DA (February 2011). "Interactions of the proteins of neuronal ceroid lipofuscinosis: clues to function". Cellular and Molecular Life Sciences. 68 (3): 453–74. doi:10.1007/s00018-010-0468-6. PMC   4120758 . PMID   20680390.
  12. Gardiner RM (2000). "The molecular genetic basis of the neuronal ceroid lipofuscinoses". Neurological Sciences. 21 (3 Suppl): S15–9. doi:10.1007/s100720070035. PMID   11073223. S2CID   9550598.
  13. Tracy CJ, Whiting RE, Pearce JW, Williamson BG, Vansteenkiste DP, Gillespie LE, Castaner LJ, Bryan JN, Coates JR, Jensen CA, Katz ML (September 2016). "Intravitreal implantation of TPP1-transduced stem cells delays retinal degeneration in canine CLN2 neuronal ceroid lipofuscinosis". Experimental Eye Research. 152: 77–87. doi: 10.1016/j.exer.2016.09.003 . PMID   27637672.

Further reading