CLN6

Last updated
CLN6
Identifiers
Aliases CLN6 , CLN4A, HsT18960, nclf, ceroid-lipofuscinosis, neuronal 6, late infantile, variant, transmembrane ER protein, CLN6 transmembrane ER protein, CLN6A
External IDs OMIM: 606725 MGI: 2159324 HomoloGene: 9898 GeneCards: CLN6
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_017882

NM_001033175

RefSeq (protein)

NP_060352

n/a

Location (UCSC)n/a Chr 9: 62.75 – 62.76 Mb
PubMed search [2] [3]
Wikidata
View/Edit Human View/Edit Mouse

Ceroid-lipofuscinosis neuronal protein 6 is a protein that in humans is encoded by the CLN6 gene. [4] [5] [6]

Contents

The CLN6 protein is part of the EGRESS complex (ER-to-Golgi relaying of enzymes of the lysosomal system), which recruits lysosomal enzymes at the endoplasmic reticulum to promote their transfer to the Golgi complex. [7] The EGRESS complex is composed of CLN6 and CLN8 proteins. [7] Loss-of-function mutations in CLN6 result in inefficient export of lysosomal enzymes from the endoplasmic reticulum and diminished levels of the enzymes at the lysosome. [7]

See also

Related Research Articles

Batten disease is a fatal disease of the nervous system that typically begins in childhood. Onset of symptoms is usually between 5 and 10 years of age. Often, it is autosomal recessive. It is the common name for a group of disorders called the neuronal ceroid lipofuscinoses (NCLs).

<span class="mw-page-title-main">Neuronal ceroid lipofuscinosis</span> Medical condition

Neuronal ceroid lipofuscinosis is the general name for a family of at least eight genetically separate neurodegenerative lysosomal storage diseases that result from excessive accumulation of lipopigments (lipofuscin) in the body's tissues. These lipopigments are made up of fats and proteins. Their name comes from the word stem "lipo-", which is a variation on lipid, and from the term "pigment", used because the substances take on a greenish-yellow color when viewed under an ultraviolet light microscope. These lipofuscin materials build up in neuronal cells and many organs, including the liver, spleen, myocardium, and kidneys.

Infantile neuronal ceroid lipofuscinoses (INCL) or Santavuori disease or Hagberg-Santavuori disease or Santavuori-Haltia disease or Infantile Finnish type neuronal ceroid lipofuscinosis or Balkan disease is a form of NCL and inherited as a recessive autosomal genetic trait. The disorder is progressive, degenerative and fatal, extremely rare worldwide – with approximately 60 official cases reported by 1982, perhaps 100 with the condition in total today – but relatively common in Finland due to the local founder effect.

<span class="mw-page-title-main">Battenin</span> Protein-coding gene in the species Homo sapiens

Battenin is a protein that in humans is encoded by the CLN3 gene located on chromosome 16. Battenin is not clustered into any Pfam clan, but it is included in the TCDB suggesting that it is a transporter. In humans, it belongs to the atypical SLCs due to its structural and phylogenetic similarity to other SLC transporters.

<span class="mw-page-title-main">Cathepsin A</span>

Cathepsin A is an enzyme that is classified both as a cathepsin and a carboxypeptidase. In humans, it is encoded by the CTSA gene.

<span class="mw-page-title-main">Cartilage associated protein</span> Protein-coding gene in the species Homo sapiens

Cartilage associated protein is a protein that in humans is encoded by the CRTAP gene.

<span class="mw-page-title-main">Membrane-bound transcription factor site-1 protease</span> Mammalian protein found in Homo sapiens

Membrane-bound transcription factor site-1 protease, or site-1 protease (S1P) for short, also known as subtilisin/kexin-isozyme 1 (SKI-1), is an enzyme that in humans is encoded by the MBTPS1 gene. S1P cleaves the endoplasmic reticulum loop of sterol regulatory element-binding protein (SREBP) transcription factors.

<span class="mw-page-title-main">Palmitoyl(protein) hydrolase</span>

Palmitoyl protein hydrolase/thioesterases is an enzyme (EC 3.1.2.22) that removes thioester-linked fatty acyl groups such as palmitate from modified cysteine residues in proteins or peptides during lysosomal degradation. It catalyzes the reaction

<span class="mw-page-title-main">WFS1</span> Protein-coding gene in the species Homo sapiens

Wolframin is a protein that in humans is encoded by the WFS1 gene.

<span class="mw-page-title-main">Tripeptidyl peptidase I</span> Protein-coding gene in the species Homo sapiens

Tripeptidyl-peptidase 1, also known as Lysosomal pepstatin-insensitive protease, is an enzyme that in humans is encoded by the TPP1 gene. TPP1 should not be confused with the TPP1 shelterin protein which protects telomeres and is encoded by the ACD gene. Mutations in the TPP1 gene leads to late infantile neuronal ceroid lipofuscinosis.

<span class="mw-page-title-main">PRKCSH</span> Protein-coding gene in the species Homo sapiens

Glucosidase 2 subunit beta is an enzyme that in humans is encoded by the PRKCSH gene.

<span class="mw-page-title-main">CLN5</span> Protein-coding gene in humans

Ceroid-lipofuscinosis neuronal protein 5 is a protein that in humans is encoded by the CLN5 gene.

<span class="mw-page-title-main">SUMF1</span> Protein-coding gene in the species Homo sapiens

Sulfatase-modifying factor 1 is an enzyme that in humans is encoded by the SUMF1 gene.

<span class="mw-page-title-main">CLN8</span> Protein-coding gene in humans

Protein CLN8 is a protein that in humans is encoded by the CLN8 gene.

<span class="mw-page-title-main">INSIG2</span> Protein-coding gene in the species Homo sapiens

Insulin induced gene 2, also known as INSIG2, is a protein which in humans is encoded by the INSIG2 gene.

<span class="mw-page-title-main">PPT1</span> Protein-coding gene in the species Homo sapiens

Palmitoyl-protein thioesterase 1 (PPT-1), also known as palmitoyl-protein hydrolase 1, is an enzyme that in humans is encoded by the PPT1 gene.

<span class="mw-page-title-main">Jansky–Bielschowsky disease</span> Medical condition

Jansky–Bielschowsky disease is an extremely rare autosomal recessive genetic disorder that is part of the neuronal ceroid lipofuscinosis (NCL) family of neurodegenerative disorders. It is caused by the accumulation of lipopigments in the body due to a deficiency in tripeptidyl peptidase I as a result of a mutation in the TPP1 gene. Symptoms appear between ages 2 and 4 and consist of typical neurodegenerative complications: loss of muscle function (ataxia), drug resistant seizures (epilepsy), apraxia, development of muscle twitches (myoclonus), and vision impairment. This late-infantile form of the disease progresses rapidly once symptoms are onset and ends in death between age 8 and teens. The prevalence of Jansky–Bielschowsky disease is unknown; however, NCL collectively affects an estimated 1 in 100,000 individuals worldwide. Jansky–Bielschowsky disease is related to late-infantile Batten disease and LINCL, and is under the umbrella of neuronal ceroid lipofuscinosis.

<span class="mw-page-title-main">MFSD8</span> Protein-coding gene in the species Homo sapiens

Major facilitator superfamily domain containing 8 also called MFSD8 is a protein that in humans is encoded by the MFSD8 gene. MFSD8 is an atypical SLC, thus a predicted SLC transporter. It clusters phylogenetically to the Atypical MFS Transporter family 2 (AMTF2).

Kufs disease is one of many diseases categorized under a disorder known as neuronal ceroid lipofuscinosis (NCLs) or Batten disease. NCLs are broadly described to create problems with vision, movement and cognitive function. Among all NCLs diseases, Kufs is the only one that does not affect vision, and although this is a distinguishing factor of Kufs, NCLs are typically differentiated by the age at which they appear in a patient

Cerliponase alfa, marketed as Brineura, is an enzyme replacement treatment for Batten disease, a neurodegenerative lysosomal storage disease. Specifically, Cerliponase alfa is meant to slow loss of motor function in symptomatic children over three years old with late infantile neuronal ceroid lipofuscinosis type 2 (CLN2). The disease is also known as tripeptidyl peptidase-1 (TPP1) deficiency, a soluble lysosomal enzyme deficiency. Approved by the United States Food and Drug Administration (FDA) on 27 April 2017, this is the first treatment for a neuronal ceroid lipofuscinosis of its kind, acting to slow disease progression rather than palliatively treat symptoms by giving patients the TPP1 enzyme they are lacking.

References

  1. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000032245 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. Sharp JD, Wheeler RB, Lake BD, Savukoski M, Jarvela IE, Peltonen L, Gardiner RM, Williams RE (Jul 1997). "Loci for classical and a variant late infantile neuronal ceroid lipofuscinosis map to chromosomes 11p15 and 15q21-23". Hum Mol Genet. 6 (4): 591–5. doi: 10.1093/hmg/6.4.591 . PMID   9097964.
  5. Wheeler RB, Sharp JD, Schultz RA, Joslin JM, Williams RE, Mole SE (Jan 2002). "The gene mutated in variant late-infantile neuronal ceroid lipofuscinosis (CLN6) and in nclf mutant mice encodes a novel predicted transmembrane protein". Am J Hum Genet. 70 (2): 537–42. doi:10.1086/338708. PMC   384927 . PMID   11727201.
  6. "Entrez Gene: CLN6 ceroid-lipofuscinosis, neuronal 6, late infantile, variant".
  7. 1 2 3 Bajaj L, Sharma J, di Ronza A, Zhang P, Eblimit A, Pal R, Roman D, Collette JR, Booth C, Chang KT, Sifers RN, Jung SY, Weimer JM, Chen R, Schekman RW, Sardiello M (Jun 2020). "A CLN6-CLN8 complex recruits lysosomal enzymes at the ER for Golgi transfer". J Clin Invest. 130 (8): 4118–4132. doi: 10.1172/JCI130955 . PMC   7410054 . PMID   32597833.

Further reading