ASK1

Last updated
MAP3K5
Protein MAP3K5 PDB 2clq.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases MAP3K5 , ASK1, MAPKKK5, MEKK5, mitogen-activated protein kinase kinase kinase 5
External IDs OMIM: 602448; MGI: 1346876; HomoloGene: 38114; GeneCards: MAP3K5; OMA:MAP3K5 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005923

NM_008580

RefSeq (protein)

NP_005914

NP_032606

Location (UCSC) Chr 6: 136.56 – 136.79 Mb Chr 10: 19.81 – 20.02 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Apoptosis signal-regulating kinase 1 (ASK1) also known as mitogen-activated protein kinase 5 (MAP3K5) is a member of MAP kinase family and as such a part of mitogen-activated protein kinase pathway. It activates c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases in a Raf-independent fashion in response to an array of stresses such as oxidative stress, endoplasmic reticulum stress and calcium influx. ASK1 has been found to be involved in cancer, diabetes, rheumatoid arthritis, cardiovascular and neurodegenerative diseases. [5] [6]

Contents

MAP3K5 gene coding for the protein is located on chromosome 6 at locus 6q22.33. [7] and the transcribed protein contains 1,374 amino acids with 11 kinase subdomains.[ citation needed ] Northern blot analysis shows that MAP3K5 transcript is abundant in human heart and pancreas. [8]

Mechanism of activation

Under nonstress conditions ASK1 is oligomerized (a requirement for its activation) through its C-terminal coiled-coil domain (CCC), but remains in an inactive form by the suppressive effect of reduced thioredoxin (Trx) and calcium and integrin binding protein 1 (CIB1). [9] Trx inhibits ASK1 kinase activity by direct binding to its N-terminal coiled-coil domain (NCC). Trx and CIB1 regulate ASK1 activation in a redox- or calcium- sensitive manner, respectively. Both appear to compete with TNF-α receptor-associated factor 2 (TRAF2), an ASK1 activator. TRAF2 and TRAF6 are then recruited to ASK1 to form a larger molecular mass complex. [10] Subsequently, ASK1 forms homo-oligomeric interactions not only through the CCC, but also the NCC, which leads to full activation of ASK1 through autophosphorylation at threonine 845. [11]

ASK1 gene transcription can be induced by inflammatory cytokines such as IL-1 and TNF-α through the activation of the NF-kb protein RelA. [6] Interestingly, TNF-α is also able to stabilize the ASK1 protein through deubiquitination. [12] Thus, unlike other members of the mitogen-activated protein kinase family, the regulation of ASK1 expression is transcriptional as well as post-transcriptional. [6]

Interactions

ASK1 has been shown to interact with:

Related Research Articles

A mitogen-activated protein kinase is a type of serine/threonine-specific protein kinases involved in directing cellular responses to a diverse array of stimuli, such as mitogens, osmotic stress, heat shock and proinflammatory cytokines. They regulate cell functions including proliferation, gene expression, differentiation, mitosis, cell survival, and apoptosis.

Mitogen Activated Protein (MAP) kinase kinase kinase is a serine/threonine-specific protein kinase which acts upon MAP kinase kinase. Subsequently, MAP kinase kinase activates MAP kinase. Several types of MAPKKK can exist but are mainly characterized by the MAP kinases they activate. MAPKKKs are stimulated by a large range of stimuli, primarily environmental and intracellular stressors. MAPKKK is responsible for various cell functions such as cell proliferation, cell differentiation, and apoptosis. The duration and intensity of signals determine which pathway ensues. Additionally, the use of protein scaffolds helps to place the MAPKKK in close proximity with its substrate to allow for a reaction. Lastly, because MAPKKK is involved in a series of several pathways, it has been used as a therapeutic target for cancer, amyloidosis, and neurodegenerative diseases. In humans, there are at least 19 genes which encode MAP kinase kinase kinases:

<span class="mw-page-title-main">Mitogen-activated protein kinase 9</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 9 is an enzyme that in humans is encoded by the MAPK9 gene.

<span class="mw-page-title-main">Transcription factor Jun</span> Mammalian protein found in Homo sapiens

Transcription factor Jun is a protein that in humans is encoded by the JUN gene. c-Jun, in combination with protein c-Fos, forms the AP-1 early response transcription factor. It was first identified as the Fos-binding protein p39 and only later rediscovered as the product of the JUN gene. c-jun was the first oncogenic transcription factor discovered. The proto-oncogene c-Jun is the cellular homolog of the viral oncoprotein v-jun. The viral homolog v-jun was discovered in avian sarcoma virus 17 and was named for ju-nana, the Japanese word for 17. The human JUN encodes a protein that is highly similar to the viral protein, which interacts directly with specific target DNA sequences to regulate gene expression. This gene is intronless and is mapped to 1p32-p31, a chromosomal region involved in both translocations and deletions in human malignancies.

<span class="mw-page-title-main">TRAF6</span> Protein-coding gene in the species Homo sapiens

TRAF6 is a TRAF human protein.

<span class="mw-page-title-main">TRAF2</span> Protein-coding gene in humans

TNF receptor-associated factor 2 is a protein that in humans is encoded by the TRAF2 gene.

<span class="mw-page-title-main">MAPK14</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 14, also called p38-α, is an enzyme that in humans is encoded by the MAPK14 gene.

<span class="mw-page-title-main">MAPK8</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 8 is a ubiquitous enzyme that in humans is encoded by the MAPK8 gene.

<span class="mw-page-title-main">MAP2K1</span> Protein-coding gene in the species Homo sapiens

Dual specificity mitogen-activated protein kinase kinase 1 is an enzyme that in humans is encoded by the MAP2K1 gene.

<span class="mw-page-title-main">MAP3K7</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), also known as TAK1, is an enzyme that in humans is encoded by the MAP3K7 gene.

<span class="mw-page-title-main">MAP2K4</span> Protein-coding gene in the species Homo sapiens

Dual-specificity mitogen-activated protein kinase kinase 4 is an enzyme that in humans is encoded by the MAP2K4 gene.

<span class="mw-page-title-main">MAP2K6</span> Protein-coding gene in the species Homo sapiens

Dual specificity mitogen-activated protein kinase kinase 6 also known as MAP kinase kinase 6 or MAPK/ERK kinase 6 is an enzyme that in humans is encoded by the MAP2K6 gene, on chromosome 17.

<span class="mw-page-title-main">TRAF5</span> Protein-coding gene in the species Homo sapiens

TNF receptor-associated factor 5 is a protein that in humans is encoded by the TRAF5 gene.

<span class="mw-page-title-main">MAP3K1</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 1 (MAP3K1) is a signal transduction enzyme that in humans is encoded by the autosomal MAP3K1 gene.

<span class="mw-page-title-main">MAP2K7</span> Protein-coding gene in the species Homo sapiens

Dual specificity mitogen-activated protein kinase kinase 7, also known as MAP kinase kinase 7 or MKK7, is an enzyme that in humans is encoded by the MAP2K7 gene. This protein is a member of the mitogen-activated protein kinase kinase family. The MKK7 protein exists as six different isoforms with three possible N-termini and two possible C-termini.

<span class="mw-page-title-main">MAPK8IP3</span> Protein-coding gene in the species Homo sapiens

C-jun-amino-terminal kinase-interacting protein 3 is an enzyme that in humans is encoded by the MAPK8IP3 gene.

<span class="mw-page-title-main">MAP3K12</span>

Mitogen-activated protein kinase 12 is an enzyme that in humans is encoded by the MAP3K12 gene.

<span class="mw-page-title-main">MAP4K2</span> Protein-coding gene in humans

Mitogen-activated protein kinase kinase kinase kinase 2 is an enzyme that in humans is encoded by the MAP4K2 gene.

<span class="mw-page-title-main">MAPK10</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 10 also known as c-Jun N-terminal kinase 3 (JNK3) is an enzyme that in humans is encoded by the MAPK10 gene.

<span class="mw-page-title-main">Mitogen-activated protein kinase kinase kinase 6</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 6 is a protein that in humans is encoded by the MAP3K6 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000197442 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000071369 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Hattori K, Naguro I, Runchel C, Ichijo H (April 2009). "The roles of ASK family proteins in stress responses and diseases". Cell Communication and Signaling. 7: 9. doi: 10.1186/1478-811X-7-9 . PMC   2685135 . PMID   19389260.
  6. 1 2 3 Nygaard G, Di Paolo JA, Hammaker D, Boyle DL, Budas G, Notte GT, et al. (May 2018). "Regulation and function of apoptosis signal-regulating kinase 1 in rheumatoid arthritis". Biochemical Pharmacology. 151: 282–290. doi:10.1016/j.bcp.2018.01.041. PMID   29408488. S2CID   4863537.
  7. Rampoldi L, Zimbello R, Bortoluzzi S, Tiso N, Valle G, Lanfranchi G, Danieli GA (1997). "Chromosomal localization of four MAPK signaling cascade genes: MEK1, MEK3, MEK4 and MEKK5". Cytogenetics and Cell Genetics. 78 (3–4): 301–3. doi:10.1159/000134677. hdl: 11577/2469645 . PMID   9465908.
  8. "Entrez Gene: MAP3K5 mitogen-activated protein kinase kinase kinase 5".
  9. Yoon KW, Cho JH, Lee JK, Kang YH, Chae JS, Kim YM, et al. (October 2009). "CIB1 functions as a Ca(2+)-sensitive modulator of stress-induced signaling by targeting ASK1". Proceedings of the National Academy of Sciences of the United States of America. 106 (41): 17389–94. Bibcode:2009PNAS..10617389Y. doi: 10.1073/pnas.0812259106 . PMC   2762684 . PMID   19805025.
  10. Noguchi T, Takeda K, Matsuzawa A, Saegusa K, Nakano H, Gohda J, et al. (November 2005). "Recruitment of tumor necrosis factor receptor-associated factor family proteins to apoptosis signal-regulating kinase 1 signalosome is essential for oxidative stress-induced cell death". The Journal of Biological Chemistry. 280 (44): 37033–40. doi: 10.1074/jbc.M506771200 . PMID   16129676.
  11. Fujino G, Noguchi T, Matsuzawa A, Yamauchi S, Saitoh M, Takeda K, Ichijo H (December 2007). "Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1". Molecular and Cellular Biology. 27 (23): 8152–63. doi:10.1128/MCB.00227-07. PMC   2169188 . PMID   17724081.
  12. He Y, Zhang W, Zhang R, Zhang H, Min W (March 2006). "SOCS1 inhibits tumor necrosis factor-induced activation of ASK1-JNK inflammatory signaling by mediating ASK1 degradation". The Journal of Biological Chemistry. 281 (9): 5559–66. doi: 10.1074/jbc.M512338200 . PMID   16407264.
  13. Chen J, Fujii K, Zhang L, Roberts T, Fu H (July 2001). "Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism". Proceedings of the National Academy of Sciences of the United States of America. 98 (14): 7783–8. Bibcode:2001PNAS...98.7783C. doi: 10.1073/pnas.141224398 . PMC   35419 . PMID   11427728.
  14. Zou X, Tsutsui T, Ray D, Blomquist JF, Ichijo H, Ucker DS, Kiyokawa H (July 2001). "The cell cycle-regulatory CDC25A phosphatase inhibits apoptosis signal-regulating kinase 1". Molecular and Cellular Biology. 21 (14): 4818–28. doi:10.1128/MCB.21.14.4818-4828.2001. PMC   87174 . PMID   11416155.
  15. Chang HY, Nishitoh H, Yang X, Ichijo H, Baltimore D (September 1998). "Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx". Science. 281 (5384): 1860–3. Bibcode:1998Sci...281.1860C. doi:10.1126/science.281.5384.1860. PMID   9743501.
  16. Zama T, Aoki R, Kamimoto T, Inoue K, Ikeda Y, Hagiwara M (June 2002). "Scaffold role of a mitogen-activated protein kinase phosphatase, SKRP1, for the JNK signaling pathway". The Journal of Biological Chemistry. 277 (26): 23919–26. doi: 10.1074/jbc.M200838200 . PMID   11959862.
  17. Takizawa T, Tatematsu C, Nakanishi Y (December 2002). "Double-stranded RNA-activated protein kinase interacts with apoptosis signal-regulating kinase 1. Implications for apoptosis signaling pathways". European Journal of Biochemistry. 269 (24): 6126–32. doi: 10.1046/j.1432-1033.2002.03325.x . PMID   12473108.
  18. Papa S, Zazzeroni F, Bubici C, Jayawardena S, Alvarez K, Matsuda S, et al. (February 2004). "Gadd45 beta mediates the NF-kappa B suppression of JNK signalling by targeting MKK7/JNKK2". Nature Cell Biology. 6 (2): 146–53. doi:10.1038/ncb1093. PMID   14743220. S2CID   5250125.
  19. Park HS, Cho SG, Kim CK, Hwang HS, Noh KT, Kim MS, et al. (November 2002). "Heat shock protein hsp72 is a negative regulator of apoptosis signal-regulating kinase 1". Molecular and Cellular Biology. 22 (22): 7721–30. doi:10.1128/MCB.22.22.7721-7730.2002. PMC   134722 . PMID   12391142.
  20. 1 2 Morita K, Saitoh M, Tobiume K, Matsuura H, Enomoto S, Nishitoh H, Ichijo H (November 2001). "Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5) in response to oxidative stress". The EMBO Journal. 20 (21): 6028–36. doi:10.1093/emboj/20.21.6028. PMC   125685 . PMID   11689443.
  21. Huang S, Shu L, Dilling MB, Easton J, Harwood FC, Ichijo H, Houghton PJ (June 2003). "Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cip1)". Molecular Cell. 11 (6): 1491–501. doi: 10.1016/S1097-2765(03)00180-1 . PMID   12820963.
  22. 1 2 Mochida Y, Takeda K, Saitoh M, Nishitoh H, Amagasa T, Ninomiya-Tsuji J, et al. (October 2000). "ASK1 inhibits interleukin-1-induced NF-kappa B activity through disruption of TRAF6-TAK1 interaction". The Journal of Biological Chemistry. 275 (42): 32747–52. doi: 10.1074/jbc.M003042200 . PMID   10921914.
  23. Matsuura H, Nishitoh H, Takeda K, Matsuzawa A, Amagasa T, Ito M, et al. (October 2002). "Phosphorylation-dependent scaffolding role of JSAP1/JIP3 in the ASK1-JNK signaling pathway. A new mode of regulation of the MAP kinase cascade". The Journal of Biological Chemistry. 277 (43): 40703–9. doi: 10.1074/jbc.M202004200 . hdl: 2297/2692 . PMID   12189133.
  24. Hwang IS, Jung YS, Kim E (October 2002). "Interaction of ALG-2 with ASK1 influences ASK1 localization and subsequent JNK activation". FEBS Letters. 529 (2–3): 183–7. doi:10.1016/S0014-5793(02)03329-X. PMID   12372597. S2CID   9264865.
  25. 1 2 Gan B, Peng X, Nagy T, Alcaraz A, Gu H, Guan JL (October 2006). "Role of FIP200 in cardiac and liver development and its regulation of TNFalpha and TSC-mTOR signaling pathways". The Journal of Cell Biology. 175 (1): 121–33. doi:10.1083/jcb.200604129. PMC   2064504 . PMID   17015619.
  26. 1 2 3 Nishitoh H, Saitoh M, Mochida Y, Takeda K, Nakano H, Rothe M, et al. (September 1998). "ASK1 is essential for JNK/SAPK activation by TRAF2". Molecular Cell. 2 (3): 389–95. doi: 10.1016/S1097-2765(00)80283-X . PMID   9774977.
  27. 1 2 Hoeflich KP, Yeh WC, Yao Z, Mak TW, Woodgett JR (October 1999). "Mediation of TNF receptor-associated factor effector functions by apoptosis signal-regulating kinase-1 (ASK1)". Oncogene. 18 (42): 5814–20. doi:10.1038/sj.onc.1202975. PMID   10523862. S2CID   12132452.

Further reading