CHUK

Last updated • 3 min readFrom Wikipedia, The Free Encyclopedia
CHUK
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases CHUK , IKBKA, IKK-alpha, IKK1, IKKA, NFKBIKA, TCF16, conserved helix-loop-helix ubiquitous kinase, component of inhibitor of nuclear factor kappa B kinase complex, BPS2
External IDs OMIM: 600664; MGI: 99484; HomoloGene: 979; GeneCards: CHUK; OMA:CHUK - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001278
NM_001320928

NM_001162410
NM_007700

RefSeq (protein)

NP_001269
NP_001307857

n/a

Location (UCSC) Chr 10: 100.19 – 100.23 Mb Chr 19: 44.06 – 44.1 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Inhibitor of nuclear factor kappa-B kinase subunit alpha (IKK-α) also known as IKK1 or conserved helix-loop-helix ubiquitous kinase (CHUK) is a protein kinase that in humans is encoded by the CHUK gene. [5] IKK-α is part of the IκB kinase complex that plays an important role in regulating the NF-κB transcription factor. [6] However, IKK-α has many additional cellular targets, and is thought to function independently of the NF-κB pathway to regulate epidermal differentiation. [7] [8]

Contents

Function

NF-κB response

IKK-α is a member of the serine/threonine protein kinase family and forms a complex in the cell with IKK-β and NEMO. NF-κB transcription factors are normally held in an inactive state by the inhibitory proteins IκBs. IKK-α and IKK-β phosphorylate the IκB proteins, marking them for degradation via ubiquitination and allowing NF-κB transcription factors to go into the nucleus. [9]

Once activated, NF-κB transcription factors regulate genes that are implicated in many important cellular processes, including immune response, inflammation, cell death, and cell proliferation.

Epidermal differentiation

IKK-α has been shown to function in epidermal differentiation independently of the NF-κB pathway. In the mouse, IKK-α is required for cell cycle exit and differentiation of the embryonic keratinocytes. IKK-α null mice have a truncated snout and limbs, shiny skin, and die shortly after birth due to dehydration. [10] Their epidermis retains a proliferative precursor cell population and lacks the outer two most differentiated cell layers. This function of IKK-α has been shown to be independent of the protein's kinase activity and of the NF-κB pathway. Instead it is thought that IKK-α regulates skin differentiation by acting as a cofactor in the TGF-β / Smad2/3 signaling pathway. [7]

The zebrafish homolog of IKK-α has also been shown to play a role in the differentiation of the embryonic epithelium. [11] Zebrafish embryos born from mothers that are mutant in IKK-α do not produce a differentiated outer epithelial monolayer. Instead, the outermost cells in these embryos are hyperproliferative and fail to turn on critical epidermal genes. Different domains of the protein are required for this function of IKK-α in zebrafish than in mice, but in neither case does the NF-κB pathway seem to be implicated.

Keratinocyte migration

IκB kinase α (IKKα) is a regulator of keratinocyte terminal differentiation and proliferation and plays a role in skin cancer. [12]

Activation of three major hydrogen peroxide-dependent pathways, EGF, FOXO1, and IKK-α occur during injury-induced epidermal keratinocyte migration, adhesion, cytoprotection and wound healing. [13] IKKα regulates human keratinocyte migration by surveillance of the redox environment after wounding. IKK-α is sulfenylated at a conserved cysteine residue in the kinase domain, which correlated with derepression of EGF promoter activity and increased EGF expression, indicating that IKK-α stimulates migration through dynamic interactions with the EGF promoter depending on the redox state within cells. [14]

Other cellular targets

IKK-α has also been reported to regulate the cell cycle protein cyclin D1 in an NF-κB-independent manner. [15] [16]

Clinical significance

Inhibition of IκB kinase (IKK) and IKK-related kinases, IKBKE (IKKε) and TANK-binding kinase 1 (TBK1), has been investigated as a therapeutic option for the treatment of inflammatory diseases and cancer. [17]

Mutations in IKK-α in humans have been linked to lethal fetal malformations. [18] The phenotype of these mutant fetuses is similar to the mouse IKK-α null phenotype, and is characterized by shiny, thickened skin and truncated limbs.

Decreased IKK-α activity has been reported in a large percentage of human squamous cell carcinomas, and restoring IKK-α in mouse models of skin cancer has been shown to have an anti-tumorigenic effect. [19]

Interactions

IKK-α has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">NF-κB</span> Family of transcription factor protein complexes

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a family of transcription factor protein complexes that controls transcription of DNA, cytokine production and cell survival. NF-κB is found in almost all animal cell types and is involved in cellular responses to stimuli such as stress, cytokines, free radicals, heavy metals, ultraviolet irradiation, oxidized LDL, and bacterial or viral antigens. NF-κB plays a key role in regulating the immune response to infection. Incorrect regulation of NF-κB has been linked to cancer, inflammatory and autoimmune diseases, septic shock, viral infection, and improper immune development. NF-κB has also been implicated in processes of synaptic plasticity and memory.

<span class="mw-page-title-main">IKBKG</span> Protein-coding gene in the species Homo sapiens

NF-kappa-B essential modulator (NEMO) also known as inhibitor of nuclear factor kappa-B kinase subunit gamma (IKK-γ) is a protein that in humans is encoded by the IKBKG gene. NEMO is a subunit of the IκB kinase complex that activates NF-κB. The human gene for IKBKG is located on the chromosome band Xq28. Multiple transcript variants encoding different isoforms have been found for this gene.

<span class="mw-page-title-main">TRAF6</span> Protein-coding gene in the species Homo sapiens

TRAF6 is a TRAF human protein.

<span class="mw-page-title-main">TRAF2</span> Protein-coding gene in humans

TNF receptor-associated factor 2 is a protein that in humans is encoded by the TRAF2 gene.

<span class="mw-page-title-main">IKK2</span> Protein-coding gene in the species Homo sapiens

IKK-β also known as inhibitor of nuclear factor kappa-B kinase subunit beta is a protein that in humans is encoded by the IKBKB gene.

<span class="mw-page-title-main">NFKB1</span> Protein-coding gene in the species Homo sapiens

Nuclear factor NF-kappa-B p105 subunit is a protein that in humans is encoded by the NFKB1 gene.

The IκB kinase is an enzyme complex that is involved in propagating the cellular response to inflammation, specifically the regulation of lymphocytes.

<span class="mw-page-title-main">IκBα</span> Protein-coding gene in the species Homo sapiens

IκBα is one member of a family of cellular proteins that function to inhibit the NF-κB transcription factor. IκBα inhibits NF-κB by masking the nuclear localization signals (NLS) of NF-κB proteins and keeping them sequestered in an inactive state in the cytoplasm. In addition, IκBα blocks the ability of NF-κB transcription factors to bind to DNA, which is required for NF-κB's proper functioning.

<span class="mw-page-title-main">RELA</span> Protein-coding gene in the species Homo sapiens

Transcription factor p65 also known as nuclear factor NF-kappa-B p65 subunit is a protein that in humans is encoded by the RELA gene.

<span class="mw-page-title-main">MAP3K7</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), also known as TAK1, is an enzyme that in humans is encoded by the MAP3K7 gene.

<span class="mw-page-title-main">NFKBIB</span> Protein-coding gene in the species Homo sapiens

NF-kappa-B inhibitor beta is a protein that in humans is encoded by the NFKBIB gene.

<span class="mw-page-title-main">BCL10</span> Protein-coding gene in the species Homo sapiens

B-cell lymphoma/leukemia 10 is a protein that in humans is encoded by the BCL10 gene. Like BCL2, BCL3, BCL5, BCL6, BCL7A, and BCL9, it has clinical significance in lymphoma.

<span class="mw-page-title-main">MAP3K14</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 14 also known as NF-kappa-B-inducing kinase (NIK) is an enzyme that in humans is encoded by the MAP3K14 gene.

<span class="mw-page-title-main">TANK-binding kinase 1</span> Protein-coding gene in the species Homo sapiens

TBK1 is an enzyme with kinase activity. Specifically, it is a serine / threonine protein kinase. It is encoded by the TBK1 gene in humans. This kinase is mainly known for its role in innate immunity antiviral response. However, TBK1 also regulates cell proliferation, apoptosis, autophagy, and anti-tumor immunity. Insufficient regulation of TBK1 activity leads to autoimmune, neurodegenerative diseases or tumorigenesis.

<span class="mw-page-title-main">IKBKE</span> Protein-coding gene in the species Homo sapiens

Inhibitor of nuclear factor kappa-B kinase subunit epsilon also known as I-kappa-B kinase epsilon or IKK-epsilon is an enzyme that in humans is encoded by the IKBKE gene.

<span class="mw-page-title-main">CARD11</span> Protein-coding gene in the species Homo sapiens

Caspase recruitment domain-containing protein 11 also known as CARD-containing MAGUK protein 1 is a protein in the CARD-CC protein family that in humans is encoded by the CARD11 gene. CARD 11 is a membrane associated protein that is found in various human tissues, including the thymus, spleen, liver, and peripheral blood leukocytes. Similarly, CARD 11 is also found in abundance in various lines of cancer cells.

<span class="mw-page-title-main">NFKBIE</span> Protein-coding gene in the species Homo sapiens

Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, epsilon, also known as NFKBIE, is a protein which in humans is encoded by the NFKBIE gene.

<span class="mw-page-title-main">NFKBIZ</span> Protein-coding gene in the species Homo sapiens

NF-kappa-B inhibitor zeta (IκBζ) is a protein that in humans is encoded by the NFKBIZ gene. This gene is a member of the ankyrin-repeat family and is induced by lipopolysaccharide (LPS). The C-terminal portion of the encoded product which contains the ankyrin repeats, shares high sequence similarity with the I kappa B family of proteins. The latter are known to play a role in inflammatory responses to LPS by their interaction with NF-κB proteins through ankyrin-repeat domains. Studies in mouse indicate that this gene product is one of the nuclear I kappa B proteins and an activator of IL-6 production. Two transcript variants encoding different isoforms have been found for this gene.

<span class="mw-page-title-main">CARD10</span> Protein-coding gene in the species Homo sapiens

Caspase recruitment domain-containing protein 10 is a protein in the CARD-CC protein family that in humans is encoded by the CARD10 gene.

The interleukin-1 receptor (IL-1R) associated kinase (IRAK) family plays a crucial role in the protective response to pathogens introduced into the human body by inducing acute inflammation followed by additional adaptive immune responses. IRAKs are essential components of the Interleukin-1 receptor signaling pathway and some Toll-like receptor signaling pathways. Toll-like receptors (TLRs) detect microorganisms by recognizing specific pathogen-associated molecular patterns (PAMPs) and IL-1R family members respond the interleukin-1 (IL-1) family cytokines. These receptors initiate an intracellular signaling cascade through adaptor proteins, primarily, MyD88. This is followed by the activation of IRAKs. TLRs and IL-1R members have a highly conserved amino acid sequence in their cytoplasmic domain called the Toll/Interleukin-1 (TIR) domain. The elicitation of different TLRs/IL-1Rs results in similar signaling cascades due to their homologous TIR motif leading to the activation of mitogen-activated protein kinases (MAPKs) and the IκB kinase (IKK) complex, which initiates a nuclear factor-κB (NF-κB) and AP-1-dependent transcriptional response of pro-inflammatory genes. Understanding the key players and their roles in the TLR/IL-1R pathway is important because the presence of mutations causing the abnormal regulation of Toll/IL-1R signaling leading to a variety of acute inflammatory and autoimmune diseases.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000213341 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000025199 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Mock BA, Connelly MA, McBride OW, Kozak CA, Marcu KB (May 1995). "CHUK, a conserved helix-loop-helix ubiquitous kinase, maps to human chromosome 10 and mouse chromosome 19". Genomics. 27 (2): 348–51. doi:10.1006/geno.1995.1054. PMID   7558004.
  6. Häcker H, Karin M (October 2006). "Regulation and function of IKK and IKK-related kinases". Sci. STKE. 2006 (357): re13. doi:10.1126/stke.3572006re13. PMID   17047224. S2CID   19617181.
  7. 1 2 Descargues P, Sil AK, Karin M (October 2008). "IKKα, a critical regulator of epidermal differentiation and a suppressor of skin cancer". EMBO J. 27 (20): 2639–47. doi:10.1038/emboj.2008.196. PMC   2556095 . PMID   18818691.
  8. Zhu F, Park E, Liu B, Xia X, Fischer SM, Hu Y (February 2009). "Critical role of IkappaB kinase alpha in embryonic skin development and skin carcinogenesis". Histol. Histopathol. 24 (2): 265–71. PMC   7243875 . PMID   19085841.
  9. "Entrez Gene: CHUK conserved helix-loop-helix ubiquitous kinase".
  10. Qiutang Li; Qingxian Lu; Jason Y. Hwang; Dirk Büscher; Kuo-Fen Lee; Juan Carlos Izpisua-Belmonte; Inder M. Verma (May 1999). "IKK1-deficient mice exhibit abnormal development of skin and skeleton". Genes Dev. 13 (10): 1322–8. doi:10.1101/gad.13.10.1322. PMC   316728 . PMID   10346820.
  11. Fukazawa C, Santiago C, Park K, Deery W, Gomez de la Torre Canny S, Holterhoff C, Wagner DS (October 2010). "poky/chuk/ikk1 is required for differentiation of the zebrafish embryonic epidermis". Developmental Biology. 346 (2): 272–83. doi:10.1016/j.ydbio.2010.07.037. PMC   2956273 . PMID   20692251.
  12. Xie Y, Xie K, Gou Q, Chen N (2015). "IκB kinase α functions as a tumor suppressor in epithelial-derived tumors through an NF-κB-independent pathway (Review)". Oncology Reports. 34 (5): 2225–32. doi: 10.3892/or.2015.4229 . PMID   26323241.
  13. Lisse TS, King BL, Rieger S (February 2016). "Comparative transcriptomic profiling of hydrogen peroxide signaling networks in zebrafish and human keratinocytes: Implications toward conservation, migration and wound healing". Scientific Reports. 6: 20328. Bibcode:2016NatSR...620328L. doi:10.1038/srep20328. PMC   4742856 . PMID   26846883.
  14. Lisse TS, Rieger S (March 2017). "IKKα regulates human keratinocyte migration through surveillance of the redox environment". Journal of Cell Science. 130 (5): 975–988. doi:10.1242/jcs.197343. PMC   5358334 . PMID   28122935.
  15. Kwak YT, Li R, Becerra CR, Tripathy D, Frenkel EP, Verma UN (August 2005). "IkappaB kinase alpha regulates subcellular distribution and turnover of cyclin D1 by phosphorylation". J Biol Chem. 280 (40): 33945–52. doi: 10.1074/jbc.M506206200 . PMID   16103118.
  16. Song L, Dong W, Gao M, Li J, Hu M, Guo N, Huang C (February 2010). "A novel role of IKKα in the mediation of UVB-induced G0/G1 cell cycle arrest response by suppressing Cyclin D1 expression". Biochim Biophys Acta. 1803 (2): 323–32. doi:10.1016/j.bbamcr.2010.01.006. PMC   2850076 . PMID   20080131.
  17. Llona-Minguez S, Baiget J, Mackay SP (2013). "Small-molecule inhibitors of IκB kinase (IKK) and IKK-related kinases". Pharm. Pat. Anal. 2 (4): 481–498. doi:10.4155/ppa.13.31. PMID   24237125.
  18. Lahtela J, Nousiainen HO, Stefanovic V, Tallila J, Viskari H, Karikoski R, Gentile M, Saloranta C, Varilo T, Salonen R, Kestilä M (October 2010). "Mutant CHUK and severe fetal encasement malformation". New England Journal of Medicine. 363 (17): 1631–1637. doi: 10.1056/NEJMoa0911698 . PMID   20961246.
  19. Liu B, Park E, Zhu F, Bustos T, Liu J, Shen J, Fischer SM, Hu Y (November 2006). "A critical role for IκB kinase α in the development of human and mouse squamous cell carcinomas". Proc. Natl. Acad. Sci. U.S.A. 103 (46): 17202–7. Bibcode:2006PNAS..10317202L. doi: 10.1073/pnas.0604481103 . PMC   1859910 . PMID   17079494.
  20. Asare Y, Campbell-James TA, Bokov Y, Yu LL, Prestel M, El Bounkari O, Roth S, Megens RT, Straub T, Thomas K, Yan G, Schneider M, Ziesch N, Tiedt S, Silvestre-Roig C, Braster Q, Huang Y, Schneider M, Malik R, Haffner C, Liesz A, Soehnlein O, Bernhagen J, Dichgans M (June 2020). "Histone Deacetylase 9 Activates IKK to Regulate Atherosclerotic Plaque Vulnerability". Circulation Research. 127 (6): 811–823. doi: 10.1161/CIRCRESAHA.120.316743 . PMID   32546048. S2CID   219726725.
  21. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (September 1999). "NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase". Nature. 401 (6748): 82–5. Bibcode:1999Natur.401...82N. doi:10.1038/43466. PMID   10485710. S2CID   4419076.
  22. Romashkova JA, Makarov SS (September 1999). "NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling". Nature. 401 (6748): 86–90. Bibcode:1999Natur.401...86R. doi:10.1038/43474. PMID   10485711. S2CID   205033347.
  23. Yuan ZQ, Feldman RI, Sun M, Olashaw NE, Coppola D, Sussman GE, Shelley SA, Nicosia SV, Cheng JQ (August 2002). "Inhibition of JNK by cellular stress- and tumor necrosis factor alpha-induced AKT2 through activation of the NF kappa B pathway in human epithelial Cells". J. Biol. Chem. 277 (33): 29973–82. doi: 10.1074/jbc.M203636200 . PMID   12048203. (Retracted, see doi:10.1074/jbc.A116.203636, PMID   27825087,  Retraction Watch . If this is an intentional citation to a retracted paper, please replace {{ retracted |...}} with {{ retracted |...|intentional=yes}}.)
  24. Lamberti C, Lin KM, Yamamoto Y, Verma U, Verma IM, Byers S, Gaynor RB (November 2001). "Regulation of beta-catenin function by the IkappaB kinases". J. Biol. Chem. 276 (45): 42276–86. doi: 10.1074/jbc.M104227200 . PMID   11527961.
  25. Reuter TY, Medhurst AL, Waisfisz Q, Zhi Y, Herterich S, Hoehn H, Gross HJ, Joenje H, Hoatlin ME, Mathew CG, Huber PA (October 2003). "Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport". Exp. Cell Res. 289 (2): 211–21. doi:10.1016/S0014-4827(03)00261-1. PMID   14499622.
  26. 1 2 Otsuki T, Young DB, Sasaki DT, Pando MP, Li J, Manning A, Hoekstra M, Hoatlin ME, Mercurio F, Liu JM (2002). "Fanconi anemia protein complex is a novel target of the IKK signalsome". J. Cell. Biochem. 86 (4): 613–23. doi:10.1002/jcb.10270. PMID   12210728. S2CID   42471384.
  27. Agou F, Ye F, Goffinont S, Courtois G, Yamaoka S, Israël A, Véron M (May 2002). "NEMO trimerizes through its coiled-coil C-terminal domain". J. Biol. Chem. 277 (20): 17464–75. doi: 10.1074/jbc.M201964200 . PMID   11877453.
  28. 1 2 Chen G, Cao P, Goeddel DV (February 2002). "TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90". Mol. Cell. 9 (2): 401–10. doi: 10.1016/S1097-2765(02)00450-1 . PMID   11864612.
  29. 1 2 Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ (October 2000). "Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain". Cell. 103 (2): 351–61. doi: 10.1016/S0092-8674(00)00126-4 . PMID   11057907. S2CID   18154645.
  30. Shifera AS, Horwitz MS (March 2008). "Mutations in the zinc finger domain of IKK gamma block the activation of NF-kappa B and the induction of IL-2 in stimulated T lymphocytes". Mol. Immunol. 45 (6): 1633–45. doi:10.1016/j.molimm.2007.09.036. PMID   18207244.
  31. Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M (October 1997). "The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation". Cell. 91 (2): 243–52. doi: 10.1016/S0092-8674(00)80406-7 . PMID   9346241. S2CID   6399108.
  32. May MJ, D'Acquisto F, Madge LA, Glöckner J, Pober JS, Ghosh S (September 2000). "Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex". Science. 289 (5484): 1550–4. Bibcode:2000Sci...289.1550M. doi:10.1126/science.289.5484.1550. PMID   10968790.
  33. 1 2 Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DV (October 1997). "IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK". Science. 278 (5339): 866–9. Bibcode:1997Sci...278..866W. doi:10.1126/science.278.5339.866. PMID   9346485.
  34. Yeung KC, Rose DW, Dhillon AS, Yaros D, Gustafsson M, Chatterjee D, McFerran B, Wyche J, Kolch W, Sedivy JM (November 2001). "Raf Kinase Inhibitor Protein Interacts with NF-κB-Inducing Kinase and TAK1 and Inhibits NF-κB Activation". Mol. Cell. Biol. 21 (21): 7207–17. doi:10.1128/MCB.21.21.7207-7217.2001. PMC   99896 . PMID   11585904.
  35. Vig E, Green M, Liu Y, Yu KY, Kwon HJ, Tian J, Goebl MG, Harrington MA (March 2001). "SIMPL is a tumor necrosis factor-specific regulator of nuclear factor-kappaB activity". J. Biol. Chem. 276 (11): 7859–66. doi: 10.1074/jbc.M010399200 . PMID   11096118.
  36. Windheim M, Stafford M, Peggie M, Cohen P (March 2008). "Interleukin-1 (IL-1) Induces the Lys63-Linked Polyubiquitination of IL-1 Receptor-Associated Kinase 1 To Facilitate NEMO Binding and the Activation of IκBα Kinase". Mol. Cell. Biol. 28 (5): 1783–91. doi:10.1128/MCB.02380-06. PMC   2258775 . PMID   18180283.
  37. 1 2 Régnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M (July 1997). "Identification and characterization of an IkappaB kinase". Cell. 90 (2): 373–83. doi: 10.1016/S0092-8674(00)80344-X . PMID   9244310. S2CID   16217708.
  38. Xiao G, Sun SC (July 2000). "Negative regulation of the nuclear factor kappa B-inducing kinase by a cis-acting domain". J. Biol. Chem. 275 (28): 21081–5. doi: 10.1074/jbc.M002552200 . PMID   10887201.
  39. Luftig MA, Cahir-McFarland E, Mosialos G, Kieff E (May 2001). "Effects of the NIK aly mutation on NF-kappaB activation by the Epstein-Barr virus latent infection membrane protein, lymphotoxin beta receptor, and CD40". J. Biol. Chem. 276 (18): 14602–6. doi: 10.1074/jbc.C100103200 . PMID   11278268.
  40. 1 2 3 Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K (March 1999). "The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway". Nature. 398 (6724): 252–6. Bibcode:1999Natur.398..252N. doi:10.1038/18465. PMID   10094049. S2CID   4421236.
  41. Sakurai H, Miyoshi H, Toriumi W, Sugita T (April 1999). "Functional interactions of transforming growth factor beta-activated kinase 1 with IkappaB kinases to stimulate NF-kappaB activation". J. Biol. Chem. 274 (15): 10641–8. doi: 10.1074/jbc.274.15.10641 . PMID   10187861.
  42. Lin X, Cunningham ET, Mu Y, Geleziunas R, Greene WC (February 1999). "The proto-oncogene Cot kinase participates in CD3/CD28 induction of NF-kappaB acting through the NF-kappaB-inducing kinase and IkappaB kinases". Immunity. 10 (2): 271–80. doi: 10.1016/S1074-7613(00)80027-8 . PMID   10072079.
  43. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M (August 1997). "A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB". Nature. 388 (6642): 548–54. Bibcode:1997Natur.388..548D. doi: 10.1038/41493 . PMID   9252186. S2CID   4354442.
  44. Cohen L, Henzel WJ, Baeuerle PA (September 1998). "IKAP is a scaffold protein of the IkappaB kinase complex". Nature. 395 (6699): 292–6. Bibcode:1998Natur.395..292C. doi:10.1038/26254. PMID   9751059. S2CID   4327300.
  45. Wu RC, Qin J, Hashimoto Y, Wong J, Xu J, Tsai SY, Tsai MJ, O'Malley BW (May 2002). "Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) Coactivator Activity by IκB Kinase". Mol. Cell. Biol. 22 (10): 3549–61. doi:10.1128/MCB.22.10.3549-3561.2002. PMC   133790 . PMID   11971985.
  46. Prajapati S, Verma U, Yamamoto Y, Kwak YT, Gaynor RB (January 2004). "Protein phosphatase 2Cbeta association with the IkappaB kinase complex is involved in regulating NF-kappaB activity". J. Biol. Chem. 279 (3): 1739–46. doi: 10.1074/jbc.M306273200 . PMID   14585847.
  47. Liu L, Kwak YT, Bex F, García-Martínez LF, Li XH, Meek K, Lane WS, Gaynor RB (July 1998). "DNA-Dependent Protein Kinase Phosphorylation of IκBα and IκBβ Regulates NF-κB DNA Binding Properties". Mol. Cell. Biol. 18 (7): 4221–34. doi:10.1128/MCB.18.7.4221. PMC   109006 . PMID   9632806.
  48. Devin A; Lin Y; Yamaoka S; Li Z; Karin M; Liu Zg (June 2001). "The α and β Subunits of IκB Kinase (IKK) Mediate TRAF2-Dependent IKK Recruitment to Tumor Necrosis Factor (TNF) Receptor 1 in Response to TNF". Mol. Cell. Biol. 21 (12): 3986–94. doi:10.1128/MCB.21.12.3986-3994.2001. PMC   87061 . PMID   11359906.
  49. Li S, Wang L, Dorf ME (January 2009). "PKC phosphorylation of TRAF2 mediates IKKα/β recruitment and K63-linked polyubiquitination". Mol. Cell. 33 (1): 30–42. doi:10.1016/j.molcel.2008.11.023. PMC   2643372 . PMID   19150425.