IκBα

Last updated • 1 min readFrom Wikipedia, The Free Encyclopedia
NFKBIA
1NFI.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases NFKBIA , IKBA, MAD-3, NFKBI, NFKB inhibitor alpha, EDAID2
External IDs OMIM: 164008 MGI: 104741 HomoloGene: 7863 GeneCards: NFKBIA
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_020529

NM_010907

RefSeq (protein)

NP_065390

NP_035037

Location (UCSC) Chr 14: 35.4 – 35.4 Mb Chr 12: 55.54 – 55.54 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha; NFKBIA) is one member of a family of cellular proteins that function to inhibit the NF-κB transcription factor. IκBα inhibits NF-κB by masking the nuclear localization signals (NLS) of NF-κB proteins and keeping them sequestered in an inactive state in the cytoplasm. [5] In addition, IκBα blocks the ability of NF-κB transcription factors to bind to DNA, which is required for NF-κB's proper functioning. [6]

Contents

Disease linkage

The gene encoding the IκBα protein is mutated in some Hodgkin's lymphoma cells; such mutations inactivate the IκBα protein, thus causing NF-κB to be chronically active in the lymphoma tumor cells and this activity contributes to the malignant state of these tumor cells. [7]

Interactions

IκBα has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">NF-κB</span> Nuclear transcriptional activator that binds to enhancer elements in many different cell types

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a family of transcription factor protein complexes that controls transcription of DNA, cytokine production and cell survival. NF-κB is found in almost all animal cell types and is involved in cellular responses to stimuli such as stress, cytokines, free radicals, heavy metals, ultraviolet irradiation, oxidized LDL, and bacterial or viral antigens. NF-κB plays a key role in regulating the immune response to infection. Incorrect regulation of NF-κB has been linked to cancer, inflammatory and autoimmune diseases, septic shock, viral infection, and improper immune development. NF-κB has also been implicated in processes of synaptic plasticity and memory.

<span class="mw-page-title-main">IKBKG</span> Protein-coding gene in the species Homo sapiens

NF-kappa-B essential modulator (NEMO) also known as inhibitor of nuclear factor kappa-B kinase subunit gamma (IKK-γ) is a protein that in humans is encoded by the IKBKG gene. NEMO is a subunit of the IκB kinase complex that activates NF-κB. The human gene for IKBKG is located on the chromosome band Xq28. Multiple transcript variants encoding different isoforms have been found for this gene.

<span class="mw-page-title-main">TRAF6</span> Protein-coding gene in the species Homo sapiens

TRAF6 is a TRAF human protein.

<span class="mw-page-title-main">TRAF2</span> Protein-coding gene in humans

TNF receptor-associated factor 2 is a protein that in humans is encoded by the TRAF2 gene.

<span class="mw-page-title-main">IKK2</span> Protein-coding gene in the species Homo sapiens

IKK-β also known as inhibitor of nuclear factor kappa-B kinase subunit beta is a protein that in humans is encoded by the IKBKB gene.

<span class="mw-page-title-main">NFKB1</span> Protein-coding gene in the species Homo sapiens

Nuclear factor NF-kappa-B p105 subunit is a protein that in humans is encoded by the NFKB1 gene.

The IκB kinase is an enzyme complex that is involved in propagating the cellular response to inflammation, specifically the regulation of lymphocytes.

<span class="mw-page-title-main">RELA</span> Protein-coding gene in the species Homo sapiens

Transcription factor p65 also known as nuclear factor NF-kappa-B p65 subunit is a protein that in humans is encoded by the RELA gene.

<span class="mw-page-title-main">MAPK8</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 8 is a ubiquitous enzyme that in humans is encoded by the MAPK8 gene.

<span class="mw-page-title-main">CHUK</span> Protein-coding gene in humans

Inhibitor of nuclear factor kappa-B kinase subunit alpha (IKK-α) also known as IKK1 or conserved helix-loop-helix ubiquitous kinase (CHUK) is a protein kinase that in humans is encoded by the CHUK gene. IKK-α is part of the IκB kinase complex that plays an important role in regulating the NF-κB transcription factor. However, IKK-α has many additional cellular targets, and is thought to function independently of the NF-κB pathway to regulate epidermal differentiation.

<span class="mw-page-title-main">NFKBIB</span> Protein-coding gene in the species Homo sapiens

NF-kappa-B inhibitor beta is a protein that in humans is encoded by the NFKBIB gene.

<span class="mw-page-title-main">BCL10</span> Protein-coding gene in the species Homo sapiens

B-cell lymphoma/leukemia 10 is a protein that in humans is encoded by the BCL10 gene. Like BCL2, BCL3, BCL5, BCL6, BCL7A, and BCL9, it has clinical significance in lymphoma.

<span class="mw-page-title-main">RIPK2</span> Protein-coding gene in humans

Receptor-interacting serine/threonine-protein kinase 2 is an enzyme that in humans is encoded by the RIPK2 gene.

<span class="mw-page-title-main">MAP3K14</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 14 also known as NF-kappa-B-inducing kinase (NIK) is an enzyme that in humans is encoded by the MAP3K14 gene.

<span class="mw-page-title-main">TANK-binding kinase 1</span> Protein-coding gene in the species Homo sapiens

TBK1 is an enzyme with kinase activity. Specifically, it is a serine / threonine protein kinase. It is encoded by the TBK1 gene in humans. This kinase is mainly known for its role in innate immunity antiviral response. However, TBK1 also regulates cell proliferation, apoptosis, autophagy, and anti-tumor immunity. Insufficient regulation of TBK1 activity leads to autoimmune, neurodegenerative diseases or tumorigenesis.

<span class="mw-page-title-main">IKBKE</span> Protein-coding gene in the species Homo sapiens

Inhibitor of nuclear factor kappa-B kinase subunit epsilon also known as I-kappa-B kinase epsilon or IKK-epsilon is an enzyme that in humans is encoded by the IKBKE gene.

<span class="mw-page-title-main">CARD11</span> Protein-coding gene in the species Homo sapiens

Caspase recruitment domain-containing protein 11 also known as CARD-containing MAGUK protein 1 is a protein in the CARD-CC protein family that in humans is encoded by the CARD11 gene. CARD 11 is a membrane associated protein that is found in various human tissues, including the thymus, spleen, liver, and peripheral blood leukocytes. Similarly, CARD 11 is also found in abundance in various lines of cancer cells.

<span class="mw-page-title-main">NFKBIE</span> Protein-coding gene in the species Homo sapiens

Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, epsilon, also known as NFKBIE, is a protein which in humans is encoded by the NFKBIE gene.

<span class="mw-page-title-main">CARD10</span> Protein-coding gene in the species Homo sapiens

Caspase recruitment domain-containing protein 10 is a protein in the CARD-CC protein family that in humans is encoded by the CARD10 gene.

<span class="mw-page-title-main">NFKBID</span> Protein-coding gene in the species Homo sapiens

Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, delta also known as IκBNS is a protein in humans that is encoded by the NFKBID gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000100906 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000021025 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Jacobs MD, Harrison SC (1998). "Structure of an IkappaBalpha/NF-kappaB complex". Cell. 95 (6): 749–58. doi: 10.1016/S0092-8674(00)81698-0 . PMID   9865693. S2CID   7003353.
  6. Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S (1995). "Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation". Genes Dev. 9 (22): 2723–35. doi: 10.1101/gad.9.22.2723 . PMID   7590248.
  7. Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT (1999). "Mutations in the IkBa gene in Hodgkin's disease suggest a tumour suppressor role for IkappaBalpha". Oncogene. 18 (20): 3063–70. doi:10.1038/sj.onc.1202893. PMID   10340377. S2CID   8269256.
  8. Suzuki H, Chiba T, Suzuki T, Fujita T, Ikenoue T, Omata M, Furuichi K, Shikama H, Tanaka K (January 2000). "Homodimer of two F-box proteins betaTrCP1 or betaTrCP2 binds to IkappaBalpha for signal-dependent ubiquitination". J. Biol. Chem. 275 (4): 2877–84. doi: 10.1074/jbc.275.4.2877 . PMID   10644755.
  9. 1 2 Spencer E, Jiang J, Chen ZJ (February 1999). "Signal-induced ubiquitination of IkappaBalpha by the F-box protein Slimb/beta-TrCP". Genes Dev. 13 (3): 284–94. doi:10.1101/gad.13.3.284. PMC   316434 . PMID   9990853.
  10. "Molecular Interaction Database". Archived from the original on 2006-05-06. Retrieved 2012-05-08.
  11. 1 2 3 Cohen L, Henzel WJ, Baeuerle PA (September 1998). "IKAP is a scaffold protein of the IkappaB kinase complex". Nature. 395 (6699): 292–6. Bibcode:1998Natur.395..292C. doi:10.1038/26254. PMID   9751059. S2CID   4327300.
  12. 1 2 Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DV (October 1997). "IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK". Science. 278 (5339): 866–9. Bibcode:1997Sci...278..866W. doi:10.1126/science.278.5339.866. PMID   9346485.
  13. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M (August 1997). "A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB". Nature. 388 (6642): 548–54. doi: 10.1038/41493 . PMID   9252186. S2CID   4354442.
  14. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K (March 1999). "The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway". Nature. 398 (6724): 252–6. Bibcode:1999Natur.398..252N. doi:10.1038/18465. PMID   10094049. S2CID   4421236.
  15. Crépieux P, Kwon H, Leclerc N, Spencer W, Richard S, Lin R, Hiscott J (December 1997). "I kappaB alpha physically interacts with a cytoskeleton-associated protein through its signal response domain". Mol. Cell. Biol. 17 (12): 7375–85. doi:10.1128/MCB.17.12.7375. PMC   232593 . PMID   9372968.
  16. Prigent M, Barlat I, Langen H, Dargemont C (November 2000). "IkappaBalpha and IkappaBalpha /NF-kappa B complexes are retained in the cytoplasm through interaction with a novel partner, RasGAP SH3-binding protein 2". J. Biol. Chem. 275 (46): 36441–9. doi: 10.1074/jbc.M004751200 . PMID   10969074.
  17. 1 2 3 Hay DC, Kemp GD, Dargemont C, Hay RT (May 2001). "Interaction between hnRNPA1 and IkappaBalpha is required for maximal activation of NF-kappaB-dependent transcription". Mol. Cell. Biol. 21 (10): 3482–90. doi:10.1128/MCB.21.10.3482-3490.2001. PMC   100270 . PMID   11313474.
  18. Mercurio F, Murray BW, Shevchenko A, Bennett BL, Young DB, Li JW, Pascual G, Motiwala A, Zhu H, Mann M, Manning AM (February 1999). "IkappaB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex". Mol. Cell. Biol. 19 (2): 1526–38. doi:10.1128/mcb.19.2.1526. PMC   116081 . PMID   9891086.
  19. 1 2 Malek S, Huxford T, Ghosh G (September 1998). "Ikappa Balpha functions through direct contacts with the nuclear localization signals and the DNA binding sequences of NF-kappaB". J. Biol. Chem. 273 (39): 25427–35. doi: 10.1074/jbc.273.39.25427 . PMID   9738011.
  20. Chang NS (March 2002). "The non-ankyrin C terminus of Ikappa Balpha physically interacts with p53 in vivo and dissociates in response to apoptotic stress, hypoxia, DNA damage, and transforming growth factor-beta 1-mediated growth suppression". J. Biol. Chem. 277 (12): 10323–31. doi: 10.1074/jbc.M106607200 . PMID   11799106.
  21. Fischle W, Verdin E, Greene WC (August 2001). "Duration of nuclear NF-kappaB action regulated by reversible acetylation". Science. 293 (5535): 1653–7. Bibcode:2001Sci...293.1653C. doi:10.1126/science.1062374. hdl: 11858/00-001M-0000-002C-9FF1-A . PMID   11533489. S2CID   45796404.
  22. Kiernan R, Brès V, Ng RW, Coudart MP, El Messaoudi S, Sardet C, Jin DY, Emiliani S, Benkirane M (January 2003). "Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65". J. Biol. Chem. 278 (4): 2758–66. doi: 10.1074/jbc.M209572200 . PMID   12419806.
  23. Hansen SK, Baeuerle PA, Blasi F (April 1994). "Purification, reconstitution, and I kappa B association of the c-Rel-p65 (RelA) complex, a strong activator of transcription". Mol. Cell. Biol. 14 (4): 2593–603. doi:10.1128/mcb.14.4.2593. PMC   358627 . PMID   8139561.
  24. Schouten GJ, Vertegaal AC, Whiteside ST, Israël A, Toebes M, Dorsman JC, van der Eb AJ, Zantema A (June 1997). "IkappaB alpha is a target for the mitogen-activated 90 kDa ribosomal S6 kinase". EMBO J. 16 (11): 3133–44. doi:10.1093/emboj/16.11.3133. PMC   1169932 . PMID   9214631.
  25. Guo D, Li M, Zhang Y, Yang P, Eckenrode S, Hopkins D, Zheng W, Purohit S, Podolsky RH, Muir A, Wang J, Dong Z, Brusko T, Atkinson M, Pozzilli P, Zeidler A, Raffel LJ, Jacob CO, Park Y, Serrano-Rios M, Larrad MT, Zhang Z, Garchon HJ, Bach JF, Rotter JI, She JX, Wang CY (August 2004). "A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes". Nat. Genet. 36 (8): 837–41. doi:10.1038/ng1391. PMID   15247916. S2CID   41123857.
  26. Dai RM, Chen E, Longo DL, Gorbea CM, Li CC (February 1998). "Involvement of valosin-containing protein, an ATPase Co-purified with IkappaBalpha and 26 S proteasome, in ubiquitin-proteasome-mediated degradation of IkappaBalpha". J. Biol. Chem. 273 (6): 3562–73. doi: 10.1074/jbc.273.6.3562 . PMID   9452483.

Further reading