SUMO4

Last updated
SUMO4
Identifiers
Aliases SUMO4 , IDDM5, SMT3H4, SUMO-4, dJ281H8.4, small ubiquitin-like modifier 4, small ubiquitin like modifier 4
External IDs OMIM: 608829 HomoloGene: 88399 GeneCards: SUMO4
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001002255

n/a

RefSeq (protein)

NP_001002255

n/a

Location (UCSC) Chr 6: 149.4 – 149.4 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human

Small ubiquitin-related modifier 4 is a protein that in humans is encoded by the SUMO4 gene. [3] [4]

Contents

Function

This gene is a member of the SUMO gene family. This family of genes encode small ubiquitin-related modifiers that are attached to proteins and control the target proteins' subcellular localization, stability, or activity. The protein described in this record is located in the cytoplasm and specifically modifies IKBA, leading to negative regulation of NF-kappa-B-dependent transcription of the IL12B gene. A specific polymorphism in this SUMO gene, which leads to the M55V substitution, has been associated with type I diabetes. The RefSeq contains this polymorphism. [4]

Interactions

SUMO4 has been shown to interact with IκBα. [5]

Related Research Articles

<span class="mw-page-title-main">Ubiquitin carboxy-terminal hydrolase L1</span> Protein-coding gene in the species Homo sapiens

Ubiquitin carboxy-terminal hydrolase L1 is a deubiquitinating enzyme.

<span class="mw-page-title-main">SUMO protein</span> Family of proteins which attach to other proteins to modify them

In molecular biology, SUMOproteins are a family of small proteins that are covalently attached to and detached from other proteins in cells to modify their function. This process is called SUMOylation. SUMOylation is a post-translational modification involved in various cellular processes, such as nuclear-cytosolic transport, transcriptional regulation, apoptosis, protein stability, response to stress, and progression through the cell cycle.

The common disease-common variant hypothesis predicts that common disease-causing alleles, or variants, will be found in all human populations which manifest a given disease. Common variants are known to exist in coding and regulatory sequences of genes. According to the CD-CV hypothesis, some of those variants lead to susceptibility to complex polygenic diseases. Each variant at each gene influencing a complex disease will have a small additive or multiplicative effect on the disease phenotype. These diseases, or traits, are evolutionarily neutral in part because so many genes influence the traits. The hypothesis has held in the case of putative causal variants in apolipoprotein E, including APOE ε4, associated with Alzheimer's disease. IL23R has been found to be associated with Crohn's disease; the at-risk allele has a frequency 93% in the general population.

<span class="mw-page-title-main">DNA repair protein XRCC4</span> Protein-coding gene in the species Homo sapiens

DNA repair protein XRCC4 also known as X-ray repair cross-complementing protein 4 or XRCC4 is a protein that in humans is encoded by the XRCC4 gene. In addition to humans, the XRCC4 protein is also expressed in many other metazoans, fungi and in plants. The X-ray repair cross-complementing protein 4 is one of several core proteins involved in the non-homologous end joining (NHEJ) pathway to repair DNA double strand breaks (DSBs).

25-Hydroxyvitamin D 1-alpha-hydroxylase Mammalian protein found in Homo sapiens

25-Hydroxyvitamin D 1-alpha-hydroxylase also known as calcidiol 1-monooxygenase or cytochrome p450 27B1 (CYP27B1) or simply 1-alpha-hydroxylase is a cytochrome P450 enzyme that in humans is encoded by the CYP27B1 gene.

<span class="mw-page-title-main">TCF7L2</span> Protein-coding gene in humans

Transcription factor 7-like 2 , also known as TCF7L2 or TCF4, is a protein acting as a transcription factor that, in humans, is encoded by the TCF7L2 gene. The TCF7L2 gene is located on chromosome 10q25.2–q25.3, contains 19 exons. As a member of the TCF family, TCF7L2 can form a bipartite transcription factor and influence several biological pathways, including the Wnt signalling pathway.

<span class="mw-page-title-main">IκBα</span> Protein-coding gene in the species Homo sapiens

IκBα is one member of a family of cellular proteins that function to inhibit the NF-κB transcription factor. IκBα inhibits NF-κB by masking the nuclear localization signals (NLS) of NF-κB proteins and keeping them sequestered in an inactive state in the cytoplasm. In addition, IκBα blocks the ability of NF-κB transcription factors to bind to DNA, which is required for NF-κB's proper functioning.

<span class="mw-page-title-main">CAPN10</span> Protein-coding gene in the species Homo sapiens

Calpain-10 is a protein that in humans is encoded by the CAPN10 gene.

<span class="mw-page-title-main">NAD(P)H dehydrogenase (quinone 1)</span> Protein-coding gene in the species Homo sapiens

NAD(P)H dehydrogenase [quinone] 1 is an enzyme that in humans is encoded by the NQO1 gene. This protein-coding gene is a member of the NAD(P)H dehydrogenase (quinone) family and encodes a 2-electron reductase (enzyme). This FAD-binding protein forms homodimers and performs two-electron reduction of quinones to hydroquinones and of other redox dyes. It has a preference for short-chain acceptor quinones, such as ubiquinone, benzoquinone, juglone and duroquinone. This gene has an important paralog NQO2. This protein is located in the cytosol.

<span class="mw-page-title-main">PTPN22</span> Protein-coding gene in the species Homo sapiens

Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a cytoplasmatic protein encoded by gene PTPN22 and a member of PEST family of protein tyrosine phosphatases. This protein is also called "PEST-domain Enriched Phosphatase" ("PEP") or "Lymphoid phosphatase" ("LYP"). The name LYP is used strictly for the human protein encoded by PTPN22, but the name PEP is used only for its mouse homolog. However, both proteins have similar biological functions and show 70% identity in amino acid sequence. PTPN22 functions as a negative regulator of T cell receptor (TCR) signaling, which maintains homeostasis of T cell compartment.

<span class="mw-page-title-main">C4A</span> Protein-coding gene in the species Homo sapiens

Complement C4-A is a kind of the Complement component 4 protein that in humans is encoded by the C4A gene.

<span class="mw-page-title-main">CLEC16A</span> Protein-coding gene in the species Homo sapiens

C-type lectin domain family 16, also known as CLEC16A, is a protein that in humans is encoded by the CLEC16A gene.

The Center for Applied Genomics is a research center at the Children's Hospital of Philadelphia that focuses on genomics research and the utilization of basic research findings in the development of new medical treatments.

<span class="mw-page-title-main">GPX3</span> Enzyme in humans

Glutathione peroxidase 3 (GPx-3), also known as plasma glutathione peroxidase (GPx-P) or extracellular glutathione peroxidase is an enzyme that in humans is encoded by the GPX3 gene.

<span class="mw-page-title-main">CDKN2BAS</span> Non-coding RNA in the species Homo sapiens

CDKN2B-AS, also known as ANRIL is a long non-coding RNA consisting of 19 exons, spanning 126.3kb in the genome, and its spliced product is a 3834bp RNA. It is located within the p15/CDKN2B-p16/CDKN2A-p14/ARF gene cluster, in the antisense direction. Single nucleotide polymorphisms (SNPs) which alter the expression of CDKN2B-AS are associated with human healthy life expectancy, as well as with multiple diseases, including coronary artery disease, diabetes and many cancers. It binds to chromobox 7 (CBX7) within the polycomb repressive complex 1 and to SUZ12, a component of polycomb repression complex 2 and through these interactions is involved in transcriptional repression.

<span class="mw-page-title-main">UBA2</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-like 1-activating enzyme E1B (UBLE1B) also known as SUMO-activating enzyme subunit 2 (SAE2) is an enzyme that in humans is encoded by the UBA2 gene.

Most cases of type 2 diabetes involved many genes contributing small amount to the overall condition. As of 2011 more than 36 genes have been found that contribute to the risk of type 2 diabetes. All of these genes together still only account for 10% of the total genetic component of the disease.

<span class="mw-page-title-main">CDKAL1</span> Protein-coding gene in the species Homo sapiens

CDKAL1 is a gene in the methylthiotransferase family. The complete physiological function and implications of this have not been fully determined. CDKAL1 is known to code for CDK5, a regulatory subunit-associated protein 1. This protein CDK5 regulatory subunit-associated protein 1 is found broadly across tissue types including neuronal tissues and pancreatic beta cells. CDKAL1 is suspected to be involved in the CDK5/p35 pathway, in which p35 is the activator for CDK5 which regulates several neuronal functions.

<span class="mw-page-title-main">ACAD10</span> Protein-coding gene in the species Homo sapiens

Acyl-CoA dehydrogenase family, member 10 is a protein that in humans is encoded by the ACAD10 gene.

<span class="mw-page-title-main">UBE2Z</span> Protein-coding gene in the species Homo sapiens

Ubiquitin conjugating enzyme E2 Z (UBE2Z), also known as UBA6-specific E2 enzyme 1 (USE1), is an enzyme that in humans is encoded by the UBE2Z gene on chromosome 17. It is ubiquitously expressed in many tissues and cell types. UBE2Z is an E2 ubiquitin conjugating enzyme and participates in the second step of protein ubiquitination during proteolysis. A genome-wide association study (GWAS) revealed the UBE2Z gene to be associated with chronic kidney disease. The UBE2Z gene also contains one of 27 SNPs associated with increased risk of coronary artery disease.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000177688 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. Bohren KM, Nadkarni V, Song JH, Gabbay KH, Owerbach D (Jun 2004). "A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus". The Journal of Biological Chemistry. 279 (26): 27233–8. doi: 10.1074/jbc.M402273200 . PMID   15123604.
  4. 1 2 "Entrez Gene: SUMO4 SMT3 suppressor of mif two 3 homolog 4 (S. cerevisiae)".
  5. Guo D, Li M, Zhang Y, Yang P, Eckenrode S, Hopkins D, Zheng W, Purohit S, Podolsky RH, Muir A, Wang J, Dong Z, Brusko T, Atkinson M, Pozzilli P, Zeidler A, Raffel LJ, Jacob CO, Park Y, Serrano-Rios M, Larrad MT, Zhang Z, Garchon HJ, Bach JF, Rotter JI, She JX, Wang CY (Aug 2004). "A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes". Nature Genetics. 36 (8): 837–41. doi:10.1038/ng1391. PMID   15247916. S2CID   41123857.

Further reading