STK11

Last updated
STK11
LKB1 complex structure 2WTK.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases STK11 , LKB1, PJS, hLKB1, serine/threonine kinase 11
External IDs OMIM: 602216 MGI: 1341870 HomoloGene: 393 GeneCards: STK11
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000455

NM_001301853
NM_001301854
NM_011492

RefSeq (protein)

NP_000446

NP_001288782
NP_001288783
NP_035622

Location (UCSC) Chr 19: 1.18 – 1.23 Mb Chr 10: 79.95 – 79.97 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Serine/threonine kinase 11 (STK11) also known as liver kinase B1 (LKB1) or renal carcinoma antigen NY-REN-19 is a protein kinase that in humans is encoded by the STK11 gene. [5]

Contents

Expression

Testosterone and DHT treatment of murine 3T3-L1 or human SGBS adipocytes for 24 h significantly decreased the mRNA expression of LKB1 via the androgen receptor and consequently reduced the activation of AMPK by phosphorylation. In contrast, 17β-estradiol treatment increased LKB1 mRNA, an effect mediated by oestrogen receptor alpha. [6]

However, in ER-positive breast cancer cell line MCF-7, estradiol caused a dose-dependent decrease in LKB1 transcript and protein expression leading to a significant decrease in the phosphorylation of the LKB1 target AMPK. ERα binds to the STK11 promoter in a ligand-independent manner and this interaction is decreased in the presence of estradiol. Moreover, STK11 promoter activity is significantly decreased in the presence of estradiol. [7]

Function

The STK11/LKB1 gene, which encodes a member of the serine/threonine kinase family, regulates cell polarity and functions as a tumour suppressor.

LKB1 is a primary upstream kinase of adenosine monophosphate-activated protein kinase (AMPK), a necessary element in cell metabolism that is required for maintaining energy homeostasis. It is now clear that LKB1 exerts its growth suppressing effects by activating a group of ~14 other kinases, comprising AMPK and AMPK-related kinases. Activation of AMPK by LKB1 suppresses growth and proliferation when energy and nutrient levels are scarce. Activation of AMPK-related kinases by LKB1 plays vital roles maintaining cell polarity thereby inhibiting inappropriate expansion of tumour cells. A picture from current research is emerging that loss of LKB1 leads to disorganization of cell polarity and facilitates tumour growth under energetically unfavorable conditions.[ citation needed ] A study in rats showed that LKB1 expression is upregulated in cardiomyocytes after birth and that LKB1 abundance negatively correlates with proliferation of neonatal rat cardiomyocytes. [8]

Loss of LKB1 activity is associated with highly aggressive HER2+ breast cancer. [9] HER2/neu mice were engineered for loss of mammary gland expression of Lkb1 resulting in reduced latency of tumorgenesis. These mice developed mammary tumors that were highly metabolic and hyperactive for MTOR. Pre-clinical studies that simultaneously targeted mTOR and metabolism with AZD8055 (inhibitor of mTORC1 and mTORC2) and 2-DG, respectively inhibited mammary tumors from forming. [10] Mitochondria function In control mice that did not have mammary tumors were not affected by AZD8055/2-DG treatments.

LKB1 catalytic deficient mutants found in Peutz-Jeghers Syndrome activate the expression of cyclin D1 through recruitment to response elements within the promoter of the oncogene. LKB1 catalytically deficient mutants have oncogenic properties. [11]

Clinical significance

At least 51 disease-causing mutations in this gene have been discovered. [12] Germline mutations in this gene have been associated with Peutz–Jeghers syndrome, an autosomal dominant disorder characterized by the growth of polyps in the gastrointestinal tract, pigmented macules on the skin and mouth, and other neoplasms. [13] [14] [15] However, the LKB1 gene was also found to be mutated in lung cancer of sporadic origin, predominantly adenocarcinomas. [16] Further, more recent studies have uncovered a large number of somatic mutations of the LKB1 gene that are present in cervical, breast, [9] intestinal, testicular, pancreatic and skin cancer. [17] [18]

LKB1 has been implicated as a potential target for inducing cardiac regeneration after injury as the regenerative potential of cardiomyocytes is limited in adult mammals. Knockdown of Lkb1 in rat cardiomyocytes suppressed phosphorylation of AMPK and activated Yes-associated protein, which subsequently promoted cardiomyocyte proliferation. [19]

Activation

LKB1 is activated allosterically by binding to the pseudokinase STRAD and the adaptor protein MO25. The LKB1-STRAD-MO25 heterotrimeric complex represents the biologically active unit, that is capable of phosphorylating and activating AMPK and at least 12 other kinases that belong to the AMPK-related kinase family. Several novel splice isoforms of STRADα that differentially affect LKB1 activity, complex assembly, subcellular localization of LKB1 and the activation of the LKB1-dependent AMPK pathway. [20]

Structure

The crystal structure of the LKB1-STRAD-MO25 complex was elucidated using X-ray crystallography, [21] and revealed the mechanism by which LKB1 is allosterically activated. LKB1 has a structure typical of other protein kinases, with two (small and large) lobes on either side of the ligand ATP-binding pocket. STRAD and MO25 together cooperate to promote LKB1 active conformation. The LKB1 activation loop, a critical element in the process of kinase activation, is held in place by MO25, thus explaining the huge increase in LKB1 activity in the presence of STRAD and MO25 .

Splice variants

Alternate transcriptional splice variants of this gene have been observed and characterized. There are two main splice isoforms denoted LKB1 long (LKB1L) and LKB1 short (LKB1S). The short LKB1 variant is predominantly found in testes.

Interactions

STK11 has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">Oncogene</span> Gene that has the potential to cause cancer

An oncogene is a gene that has the potential to cause cancer. In tumor cells, these genes are often mutated, or expressed at high levels.

<span class="mw-page-title-main">AMP-activated protein kinase</span> Class of enzymes

5' AMP-activated protein kinase or AMPK or 5' adenosine monophosphate-activated protein kinase is an enzyme that plays a role in cellular energy homeostasis, largely to activate glucose and fatty acid uptake and oxidation when cellular energy is low. It belongs to a highly conserved eukaryotic protein family and its orthologues are SNF1 in yeast, and SnRK1 in plants. It consists of three proteins (subunits) that together make a functional enzyme, conserved from yeast to humans. It is expressed in a number of tissues, including the liver, brain, and skeletal muscle. In response to binding AMP and ADP, the net effect of AMPK activation is stimulation of hepatic fatty acid oxidation, ketogenesis, stimulation of skeletal muscle fatty acid oxidation and glucose uptake, inhibition of cholesterol synthesis, lipogenesis, and triglyceride synthesis, inhibition of adipocyte lipogenesis, inhibition of adipocyte lipolysis, and modulation of insulin secretion by pancreatic β-cells.

<span class="mw-page-title-main">Peutz–Jeghers syndrome</span> Medical condition

Peutz–Jeghers syndrome is an autosomal dominant genetic disorder characterized by the development of benign hamartomatous polyps in the gastrointestinal tract and hyperpigmented macules on the lips and oral mucosa (melanosis). This syndrome can be classed as one of various hereditary intestinal polyposis syndromes and one of various hamartomatous polyposis syndromes. It has an incidence of approximately 1 in 25,000 to 300,000 births.

<span class="mw-page-title-main">ATM serine/threonine kinase</span>

ATM serine/threonine kinase or Ataxia-telangiectasia mutated, symbol ATM, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks. It phosphorylates several key proteins that initiate activation of the DNA damage checkpoint, leading to cell cycle arrest, DNA repair or apoptosis. Several of these targets, including p53, CHK2, BRCA1, NBS1 and H2AX are tumor suppressors.

<i>PTEN</i> (gene) Tumor suppressor gene

Phosphatase and tensin homolog (PTEN) is a phosphatase in humans and is encoded by the PTEN gene. Mutations of this gene are a step in the development of many cancers, specifically glioblastoma, lung cancer, breast cancer, and prostate cancer. Genes corresponding to PTEN (orthologs) have been identified in most mammals for which complete genome data are available.

<span class="mw-page-title-main">Adenomatous polyposis coli</span> Protein-coding gene in the species Homo sapiens

Adenomatous polyposis coli (APC) also known as deleted in polyposis 2.5 (DP2.5) is a protein that in humans is encoded by the APC gene. The APC protein is a negative regulator that controls beta-catenin concentrations and interacts with E-cadherin, which are involved in cell adhesion. Mutations in the APC gene may result in colorectal cancer and desmoid tumors.

<span class="mw-page-title-main">Ataxia telangiectasia and Rad3 related</span> Protein kinase that detects DNA damage and halts cell division

Serine/threonine-protein kinase ATR also known as ataxia telangiectasia and Rad3-related protein (ATR) or FRAP-related protein 1 (FRP1) is an enzyme that, in humans, is encoded by the ATR gene. It is a large kinase of about 301.66 kDa. ATR belongs to the phosphatidylinositol 3-kinase-related kinase protein family. ATR is activated in response to single strand breaks, and works with ATM to ensure genome integrity.

<span class="mw-page-title-main">CHEK2</span> Protein-coding gene in humans

CHEK2 is a tumor suppressor gene that encodes the protein CHK2, a serine-threonine kinase. CHK2 is involved in DNA repair, cell cycle arrest or apoptosis in response to DNA damage. Mutations to the CHEK2 gene have been linked to a wide range of cancers.

mir-15 microRNA precursor family

The miR-15 microRNA precursor family is made up of small non-coding RNA genes that regulate gene expression. The family includes the related mir-15a and mir-15b sequences, as well as miR-16-1, miR-16-2, miR-195 and miR-497. These six highly conserved miRNAs are clustered on three separate chromosomes. In humans miR-15a and miR-16 are clustered within 0.5 kilobases at chromosome position 13q14. This region has been found to be the most commonly affected in chronic lymphocytic leukaemia (CLL), with deletions of the entire region in more than half of cases. Both miR-15a and miR-16 are thus frequently deleted or down-regulated in CLL samples with 13q14 deletions; occurring in more than two thirds of CLL cases. The expression of miR-15a is associated with survival in triple negative breast cancer.

<span class="mw-page-title-main">Folliculin</span> Protein-coding gene

The tumor suppressor gene FLCN encodes the protein folliculin, also known as Birt–Hogg–Dubé syndrome protein, which functions as an inhibitor of Lactate Dehydrogenase-A and a regulator of the Warburg effect. Folliculin (FLCN) is also associated with Birt–Hogg–Dubé syndrome, which is an autosomal dominant inherited cancer syndrome in which affected individuals are at risk for the development of benign cutaneous tumors (folliculomas), pulmonary cysts, and kidney tumors.

<span class="mw-page-title-main">TSC2</span> Mammalian protein found in Homo sapiens

Tuberous Sclerosis Complex 2 (TSC2), also known as Tuberin, is a protein that in humans is encoded by the TSC2 gene.

<span class="mw-page-title-main">Protein kinase, AMP-activated, alpha 1</span> Protein-coding gene in the species Homo sapiens

5'-AMP-activated protein kinase catalytic subunit alpha-1 is an enzyme that in humans is encoded by the PRKAA1 gene.

<span class="mw-page-title-main">PRKAG2</span> Protein-coding gene in the species Homo sapiens

5'-AMP-activated protein kinase subunit gamma-2 is an enzyme that in humans is encoded by the PRKAG2 gene.

<span class="mw-page-title-main">RPS6KA5</span> Enzyme

Ribosomal protein S6 kinase alpha-5 is an enzyme that in humans is encoded by the RPS6KA5 gene. This kinase, together with RPS6KA4, are thought to mediate the phosphorylation of histone H3, linked to the expression of immediate early genes.

<span class="mw-page-title-main">NUAK2</span> Protein-coding gene in the species Homo sapiens

NUAK family SNF1-like kinase 2 also known as SNF1/AMP kinase-related kinase (SNARK) is an enzyme that in humans is encoded by the NUAK2 gene. Its deficiency in humans causes anencephaly, a severe form of anterior neural tube defect that curtails brain development.

<span class="mw-page-title-main">NUAK1</span> Protein-coding gene in the species Homo sapiens

NUAK family SNF1-like kinase 1 also known as AMPK-related protein kinase 5 (ARK5) is an enzyme that in humans is encoded by the NUAK1 gene.

<span class="mw-page-title-main">CAB39</span> Protein-coding gene in the species Homo sapiens

Calcium-binding protein 39 is a protein that in humans is encoded by the CAB39 gene.

<span class="mw-page-title-main">LYK5</span> Protein-coding gene in the species Homo sapiens

Protein kinase LYK5, also known as LYK5 or STRADα, is a human protein and also denotes the gene encoding it.

<span class="mw-page-title-main">SIK1</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase SIK1 is an enzyme that in humans is encoded by the SIK1 gene.

<span class="mw-page-title-main">Hippo signaling pathway</span> Signaling pathway that controls organ size

The Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway, is a signaling pathway that controls organ size in animals through the regulation of cell proliferation and apoptosis. The pathway takes its name from one of its key signaling components—the protein kinase Hippo (Hpo). Mutations in this gene lead to tissue overgrowth, or a "hippopotamus"-like phenotype.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000118046 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000003068 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, et al. (January 1998). "Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase". Nature Genetics. 18 (1): 38–43. doi:10.1038/ng0198-38. PMID   9425897. S2CID   28986057.
  6. McInnes KJ, Brown KA, Hunger NI, Simpson ER (July 2012). "Regulation of LKB1 expression by sex hormones in adipocytes". International Journal of Obesity. 36 (7): 982–5. doi: 10.1038/ijo.2011.172 . PMID   21876548.
  7. Brown KA, McInnes KJ, Takagi K, Ono K, Hunger NI, Wang L, et al. (November 2011). "LKB1 expression is inhibited by estradiol-17β in MCF-7 cells". The Journal of Steroid Biochemistry and Molecular Biology. 127 (3–5): 439–43. doi:10.1016/j.jsbmb.2011.06.005. PMID   21689749. S2CID   25221068.
  8. Qu, Shuang; Liao, Qiao; Yu, Cheng; Chen, Yue; Luo, Han; Xia, Xuewei; He, Duofen; Xu, Zaicheng; Jose, Pedro A.; Li, Zhuxin; Wang, Wei Eric (2022-05-25). "LKB1 suppression promotes cardiomyocyte regeneration via LKB1-AMPK-YAP axis". Bosnian Journal of Basic Medical Sciences. 22 (5): 772–783. doi: 10.17305/bjbms.2021.7225 . ISSN   1840-4812. PMC   9519156 . PMID   35490365. S2CID   248465561.
  9. 1 2 Andrade-Vieira R, Xu Z, Colp P, Marignani PA (2013-02-22). "Loss of LKB1 expression reduces the latency of ErbB2-mediated mammary gland tumorigenesis, promoting changes in metabolic pathways". PLOS ONE. 8 (2): e56567. Bibcode:2013PLoSO...856567A. doi: 10.1371/journal.pone.0056567 . PMC   3579833 . PMID   23451056.
  10. Andrade-Vieira R, Goguen D, Bentley HA, Bowen CV, Marignani PA (December 2014). "Pre-clinical study of drug combinations that reduce breast cancer burden due to aberrant mTOR and metabolism promoted by LKB1 loss". Oncotarget. 5 (24): 12738–52. doi:10.18632/oncotarget.2818. PMC   4350354 . PMID   25436981.
  11. Scott KD, Nath-Sain S, Agnew MD, Marignani PA (June 2007). "LKB1 catalytically deficient mutants enhance cyclin D1 expression". Cancer Research. 67 (12): 5622–7. doi: 10.1158/0008-5472.CAN-07-0762 . PMID   17575127.
  12. Šimčíková D, Heneberg P (December 2019). "Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases". Scientific Reports. 9 (1): 18577. Bibcode:2019NatSR...918577S. doi:10.1038/s41598-019-54976-4. PMC   6901466 . PMID   31819097.
  13. Hemminki A, Tomlinson I, Markie D, Järvinen H, Sistonen P, Björkqvist AM, et al. (January 1997). "Localization of a susceptibility locus for Peutz-Jeghers syndrome to 19p using comparative genomic hybridization and targeted linkage analysis". Nature Genetics. 15 (1): 87–90. doi:10.1038/ng0197-87. PMID   8988175. S2CID   8978401.
  14. Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, et al. (January 1998). "A serine/threonine kinase gene defective in Peutz-Jeghers syndrome". Nature. 391 (6663): 184–7. Bibcode:1998Natur.391..184H. doi:10.1038/34432. PMID   9428765. S2CID   4400728.
  15. Scott R, Crooks R, Meldrum C (October 2008). "Gene symbol: STK11. Disease: Peutz-Jeghers Syndrome". Human Genetics. 124 (3): 300. doi:10.1007/s00439-008-0551-3. PMID   18846624.
  16. Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM, et al. (July 2002). "Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung". Cancer Research. 62 (13): 3659–62. PMID   12097271.
  17. Sanchez-Cespedes M (December 2007). "A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome". Oncogene. 26 (57): 7825–32. doi: 10.1038/sj.onc.1210594 . PMID   17599048.
  18. "Distribution of somatic mutations in STK11". Catalogue of Somatic Mutations in Cancer. Wellcome Trust Genome Campus, Hinxton, Cambridge. Archived from the original on 2012-04-02. Retrieved 2009-11-11.
  19. Qu, Shuang; Liao, Qiao; Yu, Cheng; Chen, Yue; Luo, Han; Xia, Xuewei; He, Duofen; Xu, Zaicheng; Jose, Pedro A.; Li, Zhuxin; Wang, Wei Eric (2022-05-25). "LKB1 suppression promotes cardiomyocyte regeneration via LKB1-AMPK-YAP axis". Bosnian Journal of Basic Medical Sciences. 22 (5): 772–783. doi: 10.17305/bjbms.2021.7225 . ISSN   1840-4812. PMC   9519156 . PMID   35490365. S2CID   248465561.
  20. Marignani PA, Scott KD, Bagnulo R, Cannone D, Ferrari E, Stella A, et al. (October 2007). "Novel splice isoforms of STRADalpha differentially affect LKB1 activity, complex assembly and subcellular localization". Cancer Biology & Therapy. 6 (10): 1627–31. doi: 10.4161/cbt.6.10.4787 . PMID   17921699.
  21. PDB: 2WTK ; Zeqiraj E, Filippi BM, Deak M, Alessi DR, van Aalten DM (December 2009). "Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation". Science. 326 (5960): 1707–11. Bibcode:2009Sci...326.1707Z. doi:10.1126/science.1178377. PMC   3518268 . PMID   19892943.
  22. 1 2 Boudeau J, Deak M, Lawlor MA, Morrice NA, Alessi DR (March 2003). "Heat-shock protein 90 and Cdc37 interact with LKB1 and regulate its stability". The Biochemical Journal. 370 (Pt 3): 849–57. doi:10.1042/BJ20021813. PMC   1223241 . PMID   12489981.
  23. Yamada E, Bastie CC (February 2014). "Disruption of Fyn SH3 domain interaction with a proline-rich motif in liver kinase B1 results in activation of AMP-activated protein kinase". PLOS ONE. 9 (2): e89604. Bibcode:2014PLoSO...989604Y. doi: 10.1371/journal.pone.0089604 . PMC   3934923 . PMID   24586906.
  24. Boudeau J, Scott JW, Resta N, Deak M, Kieloch A, Komander D, et al. (December 2004). "Analysis of the LKB1-STRAD-MO25 complex". Journal of Cell Science. 117 (Pt 26): 6365–75. doi: 10.1242/jcs.01571 . PMID   15561763.
  25. Baas AF, Boudeau J, Sapkota GP, Smit L, Medema R, Morrice NA, et al. (June 2003). "Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD". The EMBO Journal. 22 (12): 3062–72. doi:10.1093/emboj/cdg292. PMC   162144 . PMID   12805220.
  26. Marignani PA, Kanai F, Carpenter CL (August 2001). "LKB1 associates with Brg1 and is necessary for Brg1-induced growth arrest". The Journal of Biological Chemistry. 276 (35): 32415–8. doi: 10.1074/jbc.C100207200 . PMID   11445556.
  27. Nath-Sain S, Marignani PA (June 2009). "LKB1 catalytic activity contributes to estrogen receptor alpha signaling". Molecular Biology of the Cell. 20 (11): 2785–95. doi:10.1091/mbc.e08-11-1138. PMC   2688557 . PMID   19369417.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.