TIRAP

Last updated
TIRAP
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases TIRAP , BACTS1, Mal, MyD88-2, wyatt, toll-interleukin 1 receptor (TIR) domain containing adaptor protein, TIR domain containing adaptor protein
External IDs OMIM: 606252 MGI: 2152213 HomoloGene: 14285 GeneCards: TIRAP
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001039661
NM_052887
NM_148910
NM_001318776
NM_001318777

NM_001177845
NM_001177846
NM_001177847
NM_054096

RefSeq (protein)

NP_001034750
NP_001305705
NP_001305706
NP_683708

NP_001171316
NP_001171317
NP_001171318
NP_473437

Location (UCSC) Chr 11: 126.28 – 126.3 Mb Chr 9: 35.1 – 35.11 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

TIRAP (TIR domain containing adaptor protein) is an adapter molecule associated with toll-like receptors. The innate immune system recognizes microbial pathogens through Toll-like receptors (TLRs), which identify pathogen-associated molecular patterns. Different TLRs recognize different pathogen-associated molecular patterns and all TLRs have a Toll-interleukin 1 receptor (TIR) domain, which is responsible for signal transduction. The protein encoded by this gene is a TIR adaptor protein involved in the TLR4 signaling pathway of the immune system. It activates NF-kappa-B, MAPK1, MAPK3 and JNK, which then results in cytokine secretion and the inflammatory response. Alternative splicing of this gene results in several transcript variants; however, not all variants have been fully described.

Signaling pathway of toll-like receptors. Dashed grey lines represent unknown associations Toll-like receptor pathways revised.jpg
Signaling pathway of toll-like receptors. Dashed grey lines represent unknown associations

See also

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000150455 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000032041 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.

Related Research Articles

<span class="mw-page-title-main">Toll-like receptor</span> Pain receptors and inflammation

Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. They are single-pass membrane-spanning receptors usually expressed on sentinel cells such as macrophages and dendritic cells, that recognize structurally conserved molecules derived from microbes. Once these microbes have reached physical barriers such as the skin or intestinal tract mucosa, they are recognized by TLRs, which activate immune cell responses. The TLRs include TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12, and TLR13. Humans lack genes for TLR11, TLR12 and TLR13 and mice lack a functional gene for TLR10. TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10 are located on the cell membrane, whereas TLR3, TLR7, TLR8, and TLR9 are located in intracellular vesicles.

<span class="mw-page-title-main">Toll-like receptor 3</span> Protein-coding gene in the species Homo sapiens

Toll-like receptor 3 (TLR3) also known as CD283 is a protein that in humans is encoded by the TLR3 gene. TLR3 is a member of the toll-like receptor family of pattern recognition receptors of the innate immune system. TLR3 recognizes double-stranded RNA in endosomes, which is a common feature of viral genomes internalised by macrophages and dendritic cells.

<span class="mw-page-title-main">CD14</span> Mammalian protein found in Homo sapiens

CD14 is a human protein made mostly by macrophages as part of the innate immune system. It helps to detect bacteria in the body by binding lipopolysaccharide (LPS), a pathogen-associated molecular pattern (PAMP).

<span class="mw-page-title-main">IRAK4</span>

IRAK-4, in the IRAK family, is a protein kinase involved in signaling innate immune responses from Toll-like receptors. It also supports signaling from T-cell receptors. IRAK4 contains domain structures which are similar to those of IRAK1, IRAK2, IRAKM and Pelle. IRAK4 is unique compared to IRAK1, IRAK2 and IRAKM in that it functions upstream of the other IRAKs, but is more similar to Pelle in this trait. IRAK4 has important clinical applications.

<span class="mw-page-title-main">MYD88</span> Protein-coding gene in the species Homo sapiens

Myeloid differentiation primary response 88 (MYD88) is a protein that, in humans, is encoded by the MYD88 gene.

<span class="mw-page-title-main">Toll-like receptor 2</span> One of the toll-like receptors and plays a role in the immune system

Toll-like receptor 2 also known as TLR2 is a protein that in humans is encoded by the TLR2 gene. TLR2 has also been designated as CD282. TLR2 is one of the toll-like receptors and plays a role in the immune system. TLR2 is a membrane protein, a receptor, which is expressed on the surface of certain cells and recognizes foreign substances and passes on appropriate signals to the cells of the immune system.

<span class="mw-page-title-main">Toll-like receptor 1</span> One of the toll-like receptors and plays a role in the immune system

Toll-like receptor 1 (TIL) is a member of the toll-like receptor family (TLR) of pattern recognition receptors of the innate immune system. TIL recognizes pathogen-associated molecular pattern with a specificity for gram-positive bacteria. TIL has also been designated as CD281.

An Error has occurred retrieving Wikidata item for infobox

<span class="mw-page-title-main">Toll-like receptor 7</span> Protein-coding gene in the species Homo sapiens

Toll-like receptor 7, also known as TLR7, is a protein that in humans is encoded by the TLR7 gene. Orthologs are found in mammals and birds. It is a member of the toll-like receptor (TLR) family and detects single stranded RNA.

<span class="mw-page-title-main">Toll-like receptor 5</span> Protein-coding gene in the species Homo sapiens

Toll-like receptor 5, also known as TLR5, is a protein which in humans is encoded by the TLR5 gene. It is a member of the toll-like receptor (TLR) family. TLR5 is known to recognize bacterial flagellin from invading mobile bacteria. It has been shown to be involved in the onset of many diseases, which includes Inflammatory bowel disease. Recent studies have also shown that malfunctioning of TLR5 is likely related to rheumatoid arthritis, osteoclastogenesis, and bone loss. Abnormal TLR5 functioning is related to the onset of gastric, cervical, endometrial and ovarian cancers.

<span class="mw-page-title-main">Toll-like receptor 4</span> Protein-coding gene in the species Homo sapiens

Toll-like receptor 4 is a protein that in humans is encoded by the TLR4 gene. TLR4 is a transmembrane protein, member of the toll-like receptor family, which belongs to the pattern recognition receptor (PRR) family. Its activation leads to an intracellular signaling pathway NF-κB and inflammatory cytokine production which is responsible for activating the innate immune system.

<span class="mw-page-title-main">Toll-like receptor 6</span> Protein-coding gene in the species Homo sapiens

Toll-like receptor 6 is a protein that in humans is encoded by the TLR6 gene. TLR6 is a transmembrane protein, member of toll-like receptor family, which belongs to the pattern recognition receptor (PRR) family. TLR6 acts in a heterodimer form with toll-like receptor 2 (TLR2). Its ligands include multiple diacyl lipopeptides derived from gram-positive bacteria and mycoplasma and several fungal cell wall saccharides. After dimerizing with TLR2, the NF-κB intracellular signalling pathway is activated, leading to a pro-inflammatory cytokine production and activation of innate immune response. TLR6 has also been designated as CD286.

<span class="mw-page-title-main">Toll-like receptor 8</span> Protein-coding gene in the species Homo sapiens

Toll-like receptor 8 is a protein that in humans is encoded by the TLR8 gene. TLR8 has also been designated as CD288. It is a member of the toll-like receptor (TLR) family.

<span class="mw-page-title-main">Toll-like receptor 10</span> Protein-coding gene in the species Homo sapiens

Toll-like receptor 10 is a protein that in humans is encoded by the TLR10 gene. TLR10 has also been designated as CD290 . TLR10 has not been extensively studied because it is a pseudogene in mice, though all other mammalian species contain an intact copy of the TLR10 gene. Unlike other TLRs, TLR10 does not activate the immune system and has instead been shown to suppress inflammatory signaling on primary human cells. This makes TLR10 unique among the TLR family. TLR10 was thought to be an "orphan" receptor, however, recent studies have identified ligands for TLR10 and these include HIV-gp41. Ligands for TLR2 are potential ligands for TLR10.

<span class="mw-page-title-main">IRAK1</span> Protein-coding gene in the species Homo sapiens

Interleukin-1 receptor-associated kinase 1 (IRAK-1) is an enzyme in humans encoded by the IRAK1 gene. IRAK-1 plays an important role in the regulation of the expression of inflammatory genes by immune cells, such as monocytes and macrophages, which in turn help the immune system in eliminating bacteria, viruses, and other pathogens. IRAK-1 is part of the IRAK family consisting of IRAK-1, IRAK-2, IRAK-3, and IRAK-4, and is activated by inflammatory molecules released by signaling pathways during pathogenic attack. IRAK-1 is classified as a kinase enzyme, which regulates pathways in both innate and adaptive immune systems.

<span class="mw-page-title-main">TOLLIP</span> Protein-coding gene in the species Homo sapiens

Toll interacting protein, also known as TOLLIP, is an inhibitory adaptor protein that in humans is encoded by the TOLLIP gene.

<span class="mw-page-title-main">SIGIRR</span> Protein-coding gene in the species Homo sapiens

Single Ig IL-1-related receptor (SIGIRR), also called Toll/Interleukin-1 receptor 8 (TIR8) or Interleukin-1 receptor 8 (IL-1R8), is transmembrane protein encoded by gene SIGIRR, which modulate inflammation, immune response, and tumorigenesis of colonic epithelial cells.

<span class="mw-page-title-main">TICAM2</span> Protein-coding gene in the species Homo sapiens

TIR domain-containing adapter molecule 2 is a protein that in humans is encoded by the TICAM2 gene.

The interleukin-1 receptor (IL-1R) associated kinase (IRAK) family plays a crucial role in the protective response to pathogens introduced into the human body by inducing acute inflammation followed by additional adaptive immune responses. IRAKs are essential components of the Interleukin-1 receptor signaling pathway and some Toll-like receptor signaling pathways. Toll-like receptors (TLRs) detect microorganisms by recognizing specific pathogen-associated molecular patterns (PAMPs) and IL-1R family members respond the interleukin-1 (IL-1) family cytokines. These receptors initiate an intracellular signaling cascade through adaptor proteins, primarily, MyD88. This is followed by the activation of IRAKs. TLRs and IL-1R members have a highly conserved amino acid sequence in their cytoplasmic domain called the Toll/Interleukin-1 (TIR) domain. The elicitation of different TLRs/IL-1Rs results in similar signaling cascades due to their homologous TIR motif leading to the activation of mitogen-activated protein kinases (MAPKs) and the IκB kinase (IKK) complex, which initiates a nuclear factor-κB (NF-κB) and AP-1-dependent transcriptional response of pro-inflammatory genes. Understanding the key players and their roles in the TLR/IL-1R pathway is important because the presence of mutations causing the abnormal regulation of Toll/IL-1R signaling leading to a variety of acute inflammatory and autoimmune diseases.

<span class="mw-page-title-main">ECSIT</span> Protein-coding gene in the species Homo sapiens

Evolutionarily conserved signaling intermediate in Toll pathway, mitochondrial (ECSIT), also known as SITPEC, is a protein that in humans is encoded by the ECSIT gene. ECSIT is a cytosolic adaptor protein involved in inflammatory responses, embryonic development, and the assembly and stabilization of mitochondrial NADH:ubiquinone oxidoreductase.