RNF113A

Last updated

Ring Finger Protein 113A is a protein that in humans is encoded by the RNF113A gene. It is found in humans on the X Chromosome. RNF113A contains two highly conserved domains, the RING (Really Interesting New Gene) finger domain and Zinc finger domain. [1] RING finger domains have been associated with some tumor suppressors and cytokine receptor-associated molecules. These domains also act in DNA repair and mediating protein-protein interactions. [1] [2] Aliases of RNF113A across taxa include RNF113, CWC24, and ZNF183.

Contents

Gene

The gene is found on the human X Chromosome and reverse strand. The specific locus in humans is Xq24. [1] RNF113A contains 1312 nucleotides.

The red bar in white band q24 represents the location of the gene RFN113A on the human X chromosome. RNF113A Human Xq24 Locus.JPG
The red bar in white band q24 represents the location of the gene RFN113A on the human X chromosome.

Gene Structure

An upstream in-frame stop codon is found within the 5' UTR. RNF113A is an intronless gene with one isoform in humans. [1]

Protein

RNF113A translates a human protein 343 amino acids long and molecular weight of 38.8 kilodaltons. [3] The protein is found ubiquitously in the human body. [4] [5]

Yeast Two Hybrid Screens link RNF113A with other proteins. Most of these proteins are currently known to function in the human Spliceosome. [6] Some of these associations are within the U4, U5, and U6 snRNPs much the same as within yeast models. [7]

Protein Structure

RNF113A also contains one acetylation and four phosphorylation sites. [1] The protein has both an acetylation and four phosphorylation sites which have been confirmed experimentally. [8] [9] [10] [11] [12] Additional phosphorylation sites and one glycosylation site are also predicted. [13] The N terminus or 3' end of the gene contains the conserved RING and Zinc finger domains. The RING finger domain contains a cross-brace motif consisting of 6 Cystines and 1 Histidine.The Zinc finger is formed by 3 Cystines and 1 Histidine [14] [15] [16] [17] [18] [19] Typically, RING finger domains are located near the C terminus or 5' end of the protein rather than the N terminus making RNF113A unique. RING finger proteins also usually have multiple types of domains outside of the Zinc finger family. [5]

The C-terminus end of the early isolated paralog RNF113B, formerly known as Zing Finger Protein 183-like 1, contains the RING domain in yellow to the C-terminus. The known alpha-helices and beta-sheets are visible. The two grey spheres represent zinc atoms. Solution Structure of the Ring Domain of the Zinc Finger Protein 183-like 1.JPG
The C-terminus end of the early isolated paralog RNF113B, formerly known as Zing Finger Protein 183-like 1, contains the RING domain in yellow to the C-terminus. The known alpha-helices and beta-sheets are visible. The two grey spheres represent zinc atoms.

Secondary structure of the RING domain has been confirmed for the paralog, RNF113B. Two Beta sheets and one Alpha helix are present within the domain. [20] A second Alpha helix is present on the 5' side of the RING domain.

Function

Human

The RNF113A protein was identified as a phosphoprotein in a human prostate cancer cell line but the function was not tested. [21] Online Mendelian Inheritance in Man (OMIM) links mutation of RNF113A with trichothiodystrophy 5, nonphotosensitive. [22] One case study reported a nonsense mutation resulting from changing a cytosine to a thymidine in RNF113A that causes X-linked recessive trichothiodystrophy. Mothers are the carriers for the disease and display only slightly altered phenotypes that were linked to the mutation compared to their more severely affected sons. [23] Myelodysplastic syndrome and 5q-syndrome have also been linked to an upregulation of ZNF183, an alias of RNF113A. [24] It appears RNF113A may allow for a more stable activated spliceosome and post-catalytic spliceosome. [25] [26]

Yeast

The yeast ortholog Cwc24p is predicted to have a spliceosome function. [27] The protein acts in a complex with Cef1p to process pre-rRNA. The splicing is dependent on the Zinc finger and RING finger domains. [28]

Drosophila

The ortholog in fruit flies has been suggested to act as a spliceosome. Based on the observed phenotype of incomplete neuroblast differentiation, the ortholog is hypothesized to be involved in splicing namely within the central nervous system. [29] Additional research conclude a cytosine to thymidine nonsense mutation such as that of trichothiodystrophy discussed above has resulted in abnormal development in which tissues of the ectoderm germ layer are affected. [23]

Nematodes

The Caenorhabditis elegans Tag-331 ortholog has been linked to larval arrest and legality when a knock-out is created [30] The RNF-113 ortholog has been predicted to function as an ubiquitin ligase that is involved in DNA repair of inter-strand crosslinks [31]

Paralog

RNF113B is the primate-specific retrogene of RNF113A. [32] The gene is a rare example of intron gain into a gene. In humans, RNF113B is found on Chromosome 13. [33] RNF113B mRNA transcript contains an upstream in-frame stop codon. The protein has both a RING finger domain (really interesting new gene) and a zinc finger motif. [34]

RNF113B currently is not associated with any human diseases according to the Online Mendelian Inheritance in Man (OMIM) database. Preliminary research has suggested the gene to be linked to development and differentiation. [35] RNF113B has also been predicted to be a part of the ubiquitin ligase family and involved with DNA repair mechanisms after treatment with cisplatin, a chemotherapy drug that induces DNA inter-strand crosslinks. [32] [36] Further research indicates RNF113B is transcribed in a wide assortment of tissues. The transcripts can be spliced or unspliced and this action is specific to the tissue of expression. However, the mechanisms and functions of this gene specially in these tissues are still unknown.

Homology

Orthologs have been found in mammals, birds, reptiles, amphibians, fish, and invertebrates. Distant orthologs have been recognized in fungi, yeast, and plants. The zinc finger domain and RING finger domain are the regions of highest conservation. The upstream region displays the most conservation in mammals.

Scientific name Common nameE valueQuery coverIdentityAccessionProtein length Taxa Divergence (myr)
Macaca mulatta Rhesus monkey 01.000.98 NP_001185630.1 344Mammal26.8
Equus caballus Horse 01.000.93 XP_001491864.1 344Mammal96.2
Chrymsemys picta bellii Western painted turtle 00.940.80 XP_005309675.1 323Reptile322.4
Gallus gallus Chicken 9E-1770.930.77 NP_001004396.1 328Bird322.4
Xenopus laevis African clawed frog 5E-1570.900.71 AAR97523.1 319Amphibian359.1
Danio rerio Zebrafish 5E-1600.980.71 NP_001004536.1 321Fish436.8
Echinococcus multilocularis Flatworm 2E-1000.900.5 CDI98689.1 389Flatworm625
Apis florea Little honeybee 2E-1300.880.62 XP_003695009.1 325Insect725.5
Ciona intestinalis Vase Tunicate 2E-1270.920.61 NP_001027830.1 325Tunicate763.5
Saccharomyces cerevisiae Fungus 4E-400.590.44 NP_013427.1 259Yeast1211
Amorella trichopoda Shrub 4E-620.920.40 XP_006842511.1 322Plant1375

The table above displays the results of an NCBI Blast from 2015 with selected taxa from main branches of vertebrates and invertebrates. This is not a complete list.

Related Research Articles

<span class="mw-page-title-main">Chromosome 8</span> Human chromosome

Chromosome 8 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 8 spans about 146 million base pairs and represents between 4.5 and 5.0% of the total DNA in cells.

<span class="mw-page-title-main">SUHW4</span> Protein-coding gene in the species Homo sapiens

Zinc finger protein 280D, also known as Suppressor Of Hairy Wing Homolog 4, SUWH4, Zinc Finger Protein 634, ZNF634, or KIAA1584, is a protein that in humans is encoded by the ZNF280D gene located on chromosome 15q21.3.

<span class="mw-page-title-main">EVI5L</span> Protein-coding gene in the species Homo sapiens

EVI5L is a protein that in humans is encoded by the EVI5L gene. EVI5L is a member of the Ras superfamily of monomeric guanine nucleotide-binding (G) proteins, and functions as a GTPase-activating protein (GAP) with a broad specificity. Measurement of in vitro Rab-GAP activity has shown that EVI5L has significant Rab2A- and Rab10-GAP activity.

TMEM143 is a protein that in humans is encoded by TMEM143 gene. TMEM143, a dual-pass protein, is predicted to reside in the mitochondria and high expression has been found in both human skeletal muscle and the heart. Interaction with other proteins indicate that TMEM143 could potentially play a role in tumor suppression/expression and cancer regulation.

<span class="mw-page-title-main">ZNF837</span>

ZNF837 is a protein that in humans is encoded by the ZNF837 gene, is located at 19q13.431 with minus strand orientation. ZNF837 protein is characterized as a C2H2-type zinc finger protein.

<span class="mw-page-title-main">C14orf80</span> Protein-coding gene in the species Homo sapiens

Uncharacterized protein C14orf80 is a protein which in humans is encoded by the chromosome 14 open reading frame 80, C14orf80, gene.

<span class="mw-page-title-main">C8orf48</span> Protein-coding gene in the species Homo sapiens

C8orf48 is a protein that in humans is encoded by the C8orf48 gene. C8orf48 is a nuclear protein specifically predicted to be located in the nuclear lamina. C8orf48 has been found to interact with proteins that are involved in the regulation of various cellular responses like gene expression, protein secretion, cell proliferation, and inflammatory responses. This protein has been linked to breast cancer and papillary thyroid carcinoma.

<span class="mw-page-title-main">FAM76A</span> Protein-coding gene in the species Homo sapiens

FAM76A is a protein that in Homo sapiens is encoded by the FAM76A gene. Notable structural characteristics of FAM76A include an 83 amino acid coiled coil domain as well as a four amino acid poly-serine compositional bias. FAM76A is conserved in most chordates but it is not found in other deuterostrome phlya such as echinodermata, hemichordata, or xenacoelomorpha—suggesting that FAM76A arose sometime after chordates in the evolutionary lineage. Furthermore, FAM76A is not found in fungi, plants, archaea, or bacteria. FAM76A is predicted to localize to the nucleus and may play a role in regulating transcription.

Chromosome 16 open reading frame 95 (C16orf95) is a gene which in humans encodes the protein C16orf95. It has orthologs in mammals, and is expressed at a low level in many tissues. C16orf95 evolves quickly compared to other proteins.

Coiled-coil domain containing protein 180 (CCDC180) is a protein that in humans is encoded by the CCDC180 gene. This protein is known to localize to the nucleus and is thought to be involved in regulation of transcription as are many proteins containing coiled-coil domains. As it is expressed most highly in the testes and is regulated by SRY and SOX transcription factors, it could be involved in sex determination.

<span class="mw-page-title-main">C2orf73</span> Protein-coding gene in the species Homo sapiens

Uncharacterized protein C2orf73 is a protein that in humans is encoded by the C2orf73 gene. The protein is predicted to be localized to the nucleus.

Zinc Finger Protein 800 or ZNF800 is a protein that in humans is encoded by the ZNF800 gene. The specific function of ZNF800 is not yet well understood by the scientific community.

<span class="mw-page-title-main">ZCCHC18</span> Protein-coding gene in the species Homo sapiens

Zinc finger CCHC-type containing 18 (ZCCHC18) is a protein that in humans is encoded by ZCCHC18 gene. It is also known as Smad-interacting zinc finger protein 2 (SIZN2), para-neoplastic Ma antigen family member 7b (PNMA7B), and LOC644353. Other names such as zinc finger, CCHC domain containing 12 pseudogene 1, P0CG32, ZCC18_HUMAN had been used to describe this protein.

<span class="mw-page-title-main">C19orf44</span> Mammalian protein found in Homo sapiens

Chromosome 19 open reading frame 44 is a protein that in humans is encoded by the C19orf44 gene. C19orf44 is an uncharacterized protein with an unknown function in humans. C19orf44 is non-limiting implying that the protein exists in other species besides human. The protein contains one domain of unknown function (DUF) that is highly conserved throughout its orthologs. This protein is most highly expressed in the testis and ovary, but also has significant expression in the thyroid and parathyroid. Other names for this protein include: LOC84167.

LOC101928193 is a protein which in humans is encoded by the LOC101928193 gene. There are no known aliases for this gene or protein. Similar copies of this gene, called orthologs, are known to exist in several different species across mammals, amphibians, fish, mollusks, cnidarians, fungi, and bacteria. The human LOC101928193 gene is located on the long (q) arm of chromosome 9 with a cytogenic location at 9q34.2. The molecular location of the gene is from base pair 133,189,767 to base pair 133,192,979 on chromosome 9 for an mRNA length of 3213 nucleotides. The gene and protein are not yet well understood by the scientific community, but there is data on its genetic makeup and expression. The LOC101928193 protein is targeted for the cytoplasm and has the highest level of expression in the thyroid, ovary, skin, and testes in humans.

<span class="mw-page-title-main">CCDC121</span> Protein found in humans

Coiled-coil domain containing 121 (CCDC121) is a protein encoded by the CCDC121 gene in humans. CCDC121 is located on the minus strand of chromosome 2 and encodes three protein isoforms. All isoforms of CCDC121 contain a domain of unknown function referred to as DUF4515 or pfam14988.

<span class="mw-page-title-main">SAAL1</span> Protein-coding gene in the species Homo sapiens

Serum amyloid A-like 1 is a protein in humans encoded by the SAAL1 gene.

<span class="mw-page-title-main">C12orf50</span> Protein-coding gene in humans

Chromosome 12 Open Reading Frame 50 (C12orf50) is a protein-encoding gene which in humans encodes for the C12orf50 protein. The accession id for this gene is NM_152589. The location of C12orf50 is 12q21.32. It covers 55.42 kb, from 88429231 to 88373811, on the reverse strand. Some of the neighboring genes to C12orf50 are RPS4XP15, LOC107984542, and C12orf29. RPS4XP15 is upstream C12orf50 and is on the same strand. LOC107984542 and C12orf29 are both downstream. LOC107984542 is on the opposite strand while C12orf29 is on the same strand. C12orf50 has six isoforms. This page is focusing on isoform X1. C12orf50 isoform X1 is 1711 nucleotides long and has a protein with a length of 414 aa.

<span class="mw-page-title-main">ZNF548</span> Protein-coding gene in the species Homo sapiens

Zinc Finger Protein 548 (ZNF548) is a human protein encoded by the ZNF548 gene which is located on chromosome 19. It is found in the nucleus and is hypothesized to play a role in the regulation of transcription by RNA Polymerase II. It belongs to the Krüppel C2H2-type zinc-finger protein family as it contains many zinc-finger repeats.

<span class="mw-page-title-main">KIAA2013</span> Protein-coding gene in the species Homo sapiens

KIAA2013, also known as Q8IYS2 or MGC33867, is a single-pass transmembrane protein encoded by the KIAA2013 gene in humans. The complete function of KIAA2013 has not yet been fully elucidated.

References

  1. 1 2 3 4 5 "Homo sapiens ring finger protein 113A (RNF113A), mRNA". NCBI Nucleotide. Retrieved 30 April 2015.
  2. "RNF113A ring finger protein 113A [ Homo sapiens (human) ]". NCBI Gene. Retrieved 30 April 2015.
  3. "RING finger protein 113A [Homo sapiens]". NCBI Protein. Retrieved 2 May 2015.
  4. Identification of a new member (ZNF183) of the Ring finger gene family in Xq24-25
  5. 1 2 Frattini, Annalisa; Faranda, Sara; Bagnasco, Luca; Patrosso, Cristina; Nulli, Paola; Zucchi, Ileana; Vezzoni, Paolo (June 1997). "Identification of a new member (ZNF183) of the Ring finger gene family in Xq24-25". Gene. 192 (2): 291–298. doi:10.1016/S0378-1119(97)00108-X. PMID   9224902.
  6. Hegele, Anna; Kamburov, Atanas; Grossmann, Arndt; Sourlis, Chrysovalantis; Wowro, Sylvia; Weimann, Mareike; Will, Cindy L.; Pena, Vlad; Lührmann, Reinhard; Stelzl, Ulrich (February 2012). "Dynamic Protein-Protein Interaction Wiring of the Human Spliceosome". Molecular Cell. 45 (4): 567–580. doi: 10.1016/j.molcel.2011.12.034 . PMID   22365833.
  7. Coltri, Patricia P.; Oliveira, Carla C.; Maas, Stefan (24 September 2012). "Cwc24p Is a General Saccharomyces cerevisiae Splicing Factor Required for the Stable U2 snRNP Binding to Primary Transcripts". PLOS ONE. 7 (9): e45678. Bibcode:2012PLoSO...745678C. doi: 10.1371/journal.pone.0045678 . PMC   3454408 . PMID   23029180.
  8. Mayya, V.; Lundgren, D. H.; Hwang, S.-I.; Rezaul, K.; Wu, L.; Eng, J. K.; Rodionov, V.; Han, D. K. (18 August 2009). "Quantitative Phosphoproteomic Analysis of T Cell Receptor Signaling Reveals System-Wide Modulation of Protein-Protein Interactions". Science Signaling. 2 (84): ra46. doi:10.1126/scisignal.2000007. PMID   19690332. S2CID   206670149.
  9. Dephoure, N.; Zhou, C.; Villen, J.; Beausoleil, S. A.; Bakalarski, C. E.; Elledge, S. J.; Gygi, S. P. (31 July 2008). "A quantitative atlas of mitotic phosphorylation". Proceedings of the National Academy of Sciences. 105 (31): 10762–10767. Bibcode:2008PNAS..10510762D. doi: 10.1073/pnas.0805139105 . PMC   2504835 . PMID   18669648.
  10. Rigbolt, K. T. G.; Prokhorova, T. A.; Akimov, V.; Henningsen, J.; Johansen, P. T.; Kratchmarova, I.; Kassem, M.; Mann, M.; Olsen, J. V.; Blagoev, B. (15 March 2011). "System-Wide Temporal Characterization of the Proteome and Phosphoproteome of Human Embryonic Stem Cell Differentiation". Science Signaling. 4 (164): rs3. doi:10.1126/scisignal.2001570. PMID   21406692. S2CID   206670774.
  11. Olsen, J. V.; Vermeulen, M.; Santamaria, A.; Kumar, C.; Miller, M. L.; Jensen, L. J.; Gnad, F.; Cox, J.; Jensen, T. S.; Nigg, E. A.; Brunak, S.; Mann, M. (12 January 2010). "Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis". Science Signaling. 3 (104): ra3. doi:10.1126/scisignal.2000475. PMID   20068231. S2CID   24775963.
  12. Gauci, Sharon; Helbig, Andreas O.; Slijper, Monique; Krijgsveld, Jeroen; Heck, Albert J. R.; Mohammed, Shabaz (June 2009). "Lys-N and Trypsin Cover Complementary Parts of the Phosphoproteome in a Refined SCX-Based Approach". Analytical Chemistry. 81 (11): 4493–4501. doi:10.1021/ac9004309. PMID   19413330.
  13. "NetPhos 2.0". ExPasy. Retrieved 2 May 2015.
  14. NCBI Protein NP_008909.1 https://www.ncbi.nlm.nih.gov/protein/NP_008909.1
  15. "zinc finger protein 183 (RING finger, C3HC4 type) [Homo sapiens]". NCBI Protein. Retrieved 30 April 2015.
  16. "ring finger protein 113A [Homo sapiens]". NCBI Protein. Retrieved 30 April 2015.
  17. "ZNF183 [Homo sapiens]". NCBI Protein. Retrieved 30 April 2015.
  18. "Ring finger protein 113A [Homo sapiens]". NCBI Protein. Retrieved 30 April 2015.
  19. "Ring finger protein 113A [Homo sapiens]". NCBI Protein. Retrieved 30 April 2015.
  20. "MMDB Protein Structure Summary". NCBI Structure. Retrieved 2 May 2015.
  21. Giorgianni, Francesco; Zhao, Yingxin; Desiderio, Dominic M.; Beranova-Giorgianni, Sarka (June 2007). "Toward a global characterization of the phosphoproteome in prostate cancer cells: Identification of phosphoproteins in the LNCaP cell line". Electrophoresis. 28 (12): 2027–2034. doi:10.1002/elps.200600782. PMID   17487921. S2CID   27568834.
  22. "OMIM Entry - #300953 - TRICHOTHIODYSTROPHY 5, NONPHOTOSENSITIVE; TTD5". OMIM. Retrieved 1 October 2015.
  23. 1 2 Corbett, M. A.; Dudding-Byth, T.; Crock, P. A.; Botta, E.; Christie, L. M.; Nardo, T.; Caligiuri, G.; Hobson, L.; Boyle, J.; Mansour, A.; Friend, K. L.; Crawford, J.; Jackson, G.; Vandeleur, L.; Hackett, A.; Tarpey, P.; Stratton, M. R.; Turner, G.; Gecz, J.; Field, M. (22 January 2015). "A novel X-linked trichothiodystrophy associated with a nonsense mutation in RNF113A". Journal of Medical Genetics. 52 (4): 269–274. doi:10.1136/jmedgenet-2014-102418. PMID   25612912. S2CID   33872845.
  24. Pellagatti, Andrea; Esoof, Noor; Watkins, Fiona; Langford, Cordelia F.; Vetrie, David; Campbell, Lisa J.; Fidler, Carrie; Cavenagh, James D.; Eagleton, Helen; Gordon, Peter; Woodcock, Barrie; Pushkaran, Beena; Kwan, Mark; Wainscoat, James S.; Boultwood, Jacqueline (June 2004). "Gene expression profiling in the myelodysplastic syndromes using cDNA microarray technology". British Journal of Haematology. 125 (5): 576–583. doi: 10.1111/j.1365-2141.2004.04958.x . PMID   15147372.
  25. Ilagan, J. O.; Chalkley, R. J.; Burlingame, A. L.; Jurica, M. S. (23 January 2013). "Rearrangements within human spliceosomes captured after exon ligation". RNA. 19 (3): 400–412. doi:10.1261/rna.034223.112. PMC   3677250 . PMID   23345524.
  26. Bessonov, S.; Anokhina, M.; Krasauskas, A.; Golas, M. M.; Sander, B.; Will, C. L.; Urlaub, H.; Stark, H.; Luhrmann, R. (27 October 2010). "Characterization of purified human Bact spliceosomal complexes reveals compositional and morphological changes during spliceosome activation and first step catalysis". RNA. 16 (12): 2384–2403. doi:10.1261/rna.2456210. PMC   2995400 . PMID   20980672.
  27. Fabrizio, Patrizia; Dannenberg, Julia; Dube, Prakash; Kastner, Berthold; Stark, Holger; Urlaub, Henning; Lührmann, Reinhard (November 2009). "The Evolutionarily Conserved Core Design of the Catalytic Activation Step of the Yeast Spliceosome". Molecular Cell. 36 (4): 593–608. doi: 10.1016/j.molcel.2009.09.040 . hdl: 11858/00-001M-0000-0010-9378-C . PMID   19941820.
  28. Goldfeder, M. B.; Oliveira, C. C. (1 November 2007). "Cwc24p, a Novel Saccharomyces cerevisiae Nuclear Ring Finger Protein, Affects Pre-snoRNA U3 Splicing". Journal of Biological Chemistry. 283 (5): 2644–2653. doi: 10.1074/jbc.M707885200 . PMID   17974558.
  29. Carney, T. D.; Struck, A. J.; Doe, C. Q. (11 September 2013). "midlife crisis encodes a conserved zinc-finger protein required to maintain neuronal differentiation in Drosophila". Development. 140 (20): 4155–4164. doi:10.1242/dev.093781. PMC   3787755 . PMID   24026126.
  30. Haerty, Wilfried; Artieri, Carlo; Khezri, Navid; Singh, Rama S; Gupta, Bhagwati P (2008). "Comparative analysis of function and interaction of transcription factors in nematodes: Extensive conservation of orthology coupled to rapid sequence evolution". BMC Genomics. 9 (1): 399. doi:10.1186/1471-2164-9-399. PMC   2533025 . PMID   18752680.
  31. Lee, Hyojin; Alpi, Arno F.; Park, Mi So; Rose, Ann; Koo, Hyeon-Sook; Leng, Fenfei (28 March 2013). "C. elegans Ring Finger Protein RNF-113 Is Involved in Interstrand DNA Crosslink Repair and Interacts with a RAD51C Homolog". PLOS ONE. 8 (3): e60071. Bibcode:2013PLoSO...860071L. doi: 10.1371/journal.pone.0060071 . PMC   3610817 . PMID   23555887.
  32. 1 2 Szczesniak, M. W.; Ciomborowska, J.; Nowak, W.; Rogozin, I. B.; Makalowska, I. (1 October 2010). "Primate and Rodent Specific Intron Gains and the Origin of Retrogenes with Splice Variants". Molecular Biology and Evolution. 28 (1): 33–37. doi:10.1093/molbev/msq260. PMC   3002245 . PMID   20889727.
  33. "Homo sapiens ring finger protein 113B (RNF113B), mRNA". NCBI Nucleotide. Retrieved 2 May 2015.
  34. "RING finger protein 113B [Homo sapiens]". NCBI Protein. Retrieved 2 May 2015.
  35. Czugala, Marta; Karolak, Justyna A; Nowak, Dorota M; Polakowski, Piotr; Pitarque, Jose; Molinari, Andrea; Rydzanicz, Malgorzata; Bejjani, Bassem A; Yue, Beatrice Y J T; Szaflik, Jacek P; Gajecka, Marzena (2 November 2011). "Novel mutation and three other sequence variants segregating with phenotype at keratoconus 13q32 susceptibility locus". European Journal of Human Genetics. 20 (4): 389–397. doi:10.1038/ejhg.2011.203. PMC   3306853 . PMID   22045297.
  36. Carroll, Eilis. "Investigation into ubiquitin signalling in response to cisplatin". Discovery Research Portal. University of Dundee. Retrieved 2 May 2015.