Ciona intestinalis | |
---|---|
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Subphylum: | Tunicata |
Class: | Ascidiacea |
Order: | Phlebobranchia |
Family: | Cionidae |
Genus: | Ciona |
Species: | C. intestinalis |
Binomial name | |
Ciona intestinalis (Linnaeus, 1767) | |
Ciona intestinalis (sometimes known by the common name of vase tunicate) is an ascidian (sea squirt), a tunicate with very soft tunic. Its Latin name literally means "pillar of intestines", referring to the fact that its body is a soft, translucent column-like structure, resembling a mass of intestines sprouting from a rock. [1] It is a globally distributed cosmopolitan species. Since Linnaeus described the species, Ciona intestinalis has been used as a model invertebrate chordate in developmental biology and genomics. [2] Studies conducted between 2005 and 2010 have shown that there are at least two, possibly four, sister species. [3] [4] [5] More recently it has been shown that one of these species has already been described as Ciona robusta . [6] By anthropogenic means, the species has invaded various parts of the world and is known as an invasive species. [7] [8]
Although Linnaeus first categorised this species as a kind of mollusk, Alexander Kovalevsky found a tadpole-like larval stage during development that shows similarity to vertebrates. Recent molecular phylogenetic studies as well as phylogenomic studies support that sea squirts are the closest invertebrate relatives of vertebrates. [9] Its full genome has been sequenced using a specimen from Half Moon Bay in California, US, [10] showing a very small genome size, less than 1/20 of the human genome, but having a gene corresponding to almost every family of genes in vertebrates.
Ciona intestinalis is a solitary tunicate with a cylindrical, soft, gelatinous body, up to 20 centimetres (8 in) long. The body colour and colour at the distal end of siphons are major external characters distinguishing sister species within the species complex. [11]
The body of Ciona is bag-like and covered by a tunic, which is a secretion of the epidermal cells. The body is attached by a permanent base located at the posterior end, while the opposite extremity has two openings, the buccal and atrial siphons. Water is drawn into the ascidian through the buccal (oral) siphon and leaves the atrium through the atrial siphon (cloacal).
Ciona intestinalis is a hermaphroditic broadcast spawner but cannot self-fertilize. [12] Eggs and sperm, when released, can stay in the water column for 1 to 2 days, while the larvae are free-swimming for 2 to 10 days.
Ciona intestinalis is considered to be an invasive species and grows in dense aggregations on any floating or submerged substrate, particularly artificial structures like pilings, aquaculture gear, floats and boat hulls, in the lower intertidal to sub-tidal zones. It often grows with or on other fouling organisms. It is thought to spread to new areas mainly through hull fouling. Since its larvae can live for up to 10 days, this species may also be transferred through the release of bilge or ballast water.
The potential impact of C. intestinalis and its introduction to new habitats can be avoided, so most agencies suggest that fish and shellfish harvesters are to avoid transfer of harvested shellfish and fishing gear to other areas, and to dry gear thoroughly before transfer, along with inspecting boat hulls. They also recommend that, if necessary, to clean them thoroughly, and to disinfect with bleach or vinegar and dry them before moving to other areas. Agencies also recommended the disposal of any organisms removed from boat hulls or gear on land and to release bilge water on land or disinfect it.
Ciona intestinalis is an hermaphrodite that releases sperm and eggs into the surrounding seawater almost simultaneously. C. intestinalis is self-sterile, and thus has been used for studies on the mechanism of self-incompatibility. [13] Self/non-self-recognition molecules are considered to play a key role in the process of interaction between sperm and the vitelline coat of the egg. It appears that self/non-self recognition in ascidians such as C. intestinalis is mechanistically similar to self-incompatibility systems in flowering plants. [13] Self-incompatibility promotes out-crossing which provides the adaptive advantage at each generation of masking deleterious recessive mutations (i.e. genetic complementation). [14]
In the sea squirt C. intestinalis a CB1 and CB2-type cannabinoid receptors is found to be targeted to axons, indicative of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling. [15]
Ciona intestinalis was one of the first animals to have its full genome sequenced, in 2002. It has a relatively small genome (about 160 Mbp) consisting of 14 pairs of chromosomes with about 16,000 genes. [16]
The draft genome analysis identified nine Hox genes, which are Ci-Hox1, 2, 3, 4, 5, 6, 10, 12, and 13. [10] Ciona robusta , the closest relative of Ciona intestinalis, also has the same set of Hox genes. The organization of Hox genes is only known for C. intestinalis among ascidians. The nine Hox genes are located on two chromosomes; Ci-Hox1 to 10 on one chromosome and Ci-Hox12 and 13 on another. The intergenic distances within the Ciona Hox genes are extraordinarily long. Seven Hox genes, Ci-Hox1 to 10, are distributed along approximately half the length of the chromosome. Comparisons to Hox gene expression and location in other species suggests that the Hox genes in ascidian genomes are under a dispersing condition. [17]
A majority of genetically encoded voltage indicator are based on the C. intestinalis voltage-sensitive domain (Ci-VSD).
There is one transferrin ortholog which is divergent from those of vertebrate models, and even more divergent from non-chordates. [18]
A retinol dehydrogenase –CiRdh10– is disclosed in Belyaeva et al. 2015. [19]
A chordate is a deuterostomic animal belonging to the phylum Chordata. All chordates possess, at some point during their larval or adult stages, five distinctive physical characteristics (synapomorphies) that distinguish them from other taxa. These five synapomorphies are a notochord, a hollow dorsal nerve cord, an endostyle or thyroid, pharyngeal slits, and a post-anal tail. The name "chordate" comes from the first of these synapomorphies, the notochord, which plays a significant role in chordate body plan structuring and movements. Chordates are also bilaterally symmetric, have a coelom, possess a closed circulatory system, and exhibit metameric segmentation.
A tunicate is an exclusively marine invertebrate animal, a member of the subphylum Tunicata. This grouping is part of the Chordata, a phylum which includes all animals with dorsal nerve cords and notochords. The subphylum was at one time called Urochordata, and the term urochordates is still sometimes used for these animals. They are the only chordates that have lost their myomeric segmentation, with the possible exception of the seriation of the gill slits. However, doliolids still display segmentation of the muscle bands.
Larvaceans or appendicularians, class Appendicularia, are solitary, free-swimming tunicates found throughout the world's oceans. While larvaceans are filter feeders like most other tunicates, they keep their tadpole-like shape as adults, with the notochord running through the tail. They can be found in the pelagic zone, specifically in the photic zone, or sometimes deeper. They are transparent planktonic animals, usually ranging from 2 mm (0.079 in) to 8 mm (0.31 in) in body length including the tail, although giant larvaceans can reach up to 10 cm (3.9 in) in length.
Ascidiacea, commonly known as the ascidians or sea squirts, is a paraphyletic class in the subphylum Tunicata of sac-like marine invertebrate filter feeders. Ascidians are characterized by a tough outer "tunic" made of a polysaccharide.
Pharyngeal slits are filter-feeding organs found among deuterostomes. Pharyngeal slits are repeated openings that appear along the pharynx caudal to the mouth. With this position, they allow for the movement of water in the mouth and out the pharyngeal slits. It is postulated that this is how pharyngeal slits first assisted in filter-feeding, and later, with the addition of gills along their walls, aided in respiration of aquatic chordates. These repeated segments are controlled by similar developmental mechanisms. Some hemichordate species can have as many as 200 gill slits. Pharyngeal clefts resembling gill slits are transiently present during the embryonic stages of tetrapod development. The presence of pharyngeal arches and clefts in the neck of the developing human embryo famously led Ernst Haeckel to postulate that "ontogeny recapitulates phylogeny"; this hypothesis, while false, contains elements of truth, as explored by Stephen Jay Gould in Ontogeny and Phylogeny. However, it is now accepted that it is the vertebrate pharyngeal pouches and not the neck slits that are homologous to the pharyngeal slits of invertebrate chordates. Pharyngeal arches, pouches, and clefts are, at some stage of life, found in all chordates. One theory of their origin is the fusion of nephridia which opened both on the outside and the gut, creating openings between the gut and the environment.
The ParaHox gene cluster is an array of homeobox genes from the Gsx, Xlox (Pdx) and Cdx gene families.
Ciona is a genus of sea squirts in the family Cionidae.
Botryllus schlosseri is a colonial ascidian tunicate. It is commonly known as the star tunicate, but it also has several other common names, including star ascidian and golden star tunicate. Colonies grow on slow-moving, submerged objects, plants, and animals in nearshore saltwater environments.
The 2R hypothesis or Ohno's hypothesis, first proposed by Susumu Ohno in 1970, is a hypothesis that the genomes of the early vertebrate lineage underwent two whole genome duplications, and thus modern vertebrate genomes reflect paleopolyploidy. The name derives from the 2 rounds of duplication originally hypothesized by Ohno, but refined in a 1994 version, and the term 2R hypothesis was probably coined in 1999. Variations in the number and timings of genome duplications typically still are referred to as examples of the 2R hypothesis.
Botrylloides violaceus is a colonial ascidian. It is commonly known as the chain tunicate, but has also been called several other common names, including: lined colonial tunicate, orange sheath tunicate, orange tunicate, and violet tunicate. Its native range is in the northwest Pacific from southern China to Japan and Siberia. Colonies grow on solid substrates and consist of individuals arranged in twisting rows. Outside its native range, it is considered an invasive species and is becoming more common in coastal waters of North America and other waters around the world, likely being spread by shipping industries.
Chordate genomics is the study of the evolution of the chordate clade based on a comparison of the genomes of several species within the clade. The field depends on whole genome data of organisms. It uses comparisons of synteny blocks, chromosome translocation, and other genomic rearrangements to determine the evolutionary history of the clade, and to reconstruct the genome of the founding species.
Albert Erives is a developmental geneticist who studies transcriptional enhancers underlying animal development and diseases of development (cancers). Erives also proposed the pacRNA model for the dual origin of the genetic code and universal homochirality. He is known for work at the intersection of genetics, evolution, developmental biology, and gene regulation. He has worked at the California Institute of Technology, University of California, Berkeley, and Dartmouth College, and is an associate professor at the University of Iowa.
Michael Levine is an American developmental and cell biologist at Princeton University, where he is the Director of the Lewis-Sigler Institute for Integrative Genomics and a Professor of Molecular Biology.
Didemnum vexillum is a species of colonial tunicate in the family Didemnidae. It is commonly called sea vomit, marine vomit, pancake batter tunicate, or carpet sea squirt. It is thought to be native to Japan, but it has been reported as an invasive species in a number of places in Europe, North America and New Zealand. It is sometimes given the nickname "D. vex" because of the vexing way in which it dominates marine ecosystems when introduced into new locations; however, the species epithet vexillum actually derives from the Latin word for flag, and the species was so named because of the way colonies' long tendrils appear to wave in the water like a flag.
Relaxin family peptide hormones in humans are represented by seven members: three relaxin-like (RLN) and four insulin-like (INSL) peptides: RLN1, RLN2, RNL3, INSL3, INSL4, INSL5, INSL6. This subdivision into two classes is based primarily on early findings, and does not reflect the evolutionary origins or physiological differences between peptides. For example, it is known that the genes coding for RLN3 and INSL5 arose from one ancestral gene, and INSL3 shares origin with RLN2 and its multiple duplicates: RLN1, INSL4, INSL6.
Voltage sensitive phosphatases or voltage sensor-containing phosphatases, commonly abbreviated VSPs, are a protein family found in many species, including humans, mice, zebrafish, frogs, and sea squirt.
Ciona savignyi is a marine animal sometimes known as the Pacific transparent sea squirt or solitary sea squirt. It is a species of tunicates in the family Cionidae. It is found in shallow waters around Japan and has spread to the west coast of North America where it is regarded as an invasive species.
Oikopleura dioica is a species of small pelagic tunicate found in the surface waters of most of the world's oceans. It is used as a model organism in research into developmental biology.
Sugar transporter SWEET1, also known as RAG1-activating protein 1 and stromal cell protein (SCP), is a membrane protein that in humans is encoded by the SLC50A1 gene. SWEET1 is the sole transporter from the SLC50 (SWEET) gene family present in the genomes of most animal species, with the exception of the nematode Caenorhabditis elegans, which has seven.
Ciona robusta is a species of marine invertebrate in the genus Ciona of the family Cionidae. The holotype was collected on the northeastern coast of Honshu Island, Japan. Populations of Ciona intestinalis known as Ciona intestinalis type A found in the Mediterranean Sea, the Pacific Ocean, east coast of North America, and the Atlantic coasts of South Africa have been shown to be Ciona robusta.