Genetically encoded voltage indicator Last updated October 12, 2025  History Even though the idea of optical measurement of neuronal activity was proposed in the late 1960s, [ 7]     the first successful GEVI that was convenient enough to put into actual use was not developed until technologies of genetic engineering had become mature in the late 1990s. The first GEVI, coined FlaSh, [ 8]     was constructed by fusing a modified green fluorescent protein  with a voltage-sensitive K+  channel (Shaker ). Unlike fluorescent proteins, the discovery of new GEVIs are seldom inspired by nature, for it is hard to find an organism which naturally has the ability to change its fluorescence based on voltage. Therefore, new GEVIs are mostly the products of genetic and protein engineering.
Two methods can be utilized to find novel GEVIs: rational design  and directed evolution . The former method contributes to the most of new GEVI variants, but recent research using directed evolution have shown promising results in GEVI optimization. [ 9]     [ 10]    
Structure Conceptually, a GEVI should sense the voltage difference across the cell membrane and report it by a change in fluorescence.  Many different structures can be used for the voltage sensing function, [ 11]     but one essential feature is that it must be imbedded in the cell membrane.  Usually, the voltage-sensing domain (VSD) of a GEVI spans across the membrane, and is connected to the fluorescent protein (FP). However, it is not necessary that sensing and reporting must happen in different structures - see, for example, the Archons.
By structure, GEVIs can be classified into four categories based on the current findings: (1) GEVIs contain a fluorescent protein FRET pair, e.g. VSFP1, (2) Single opsin GEVIs, e.g. Arch, (3) Opsin-FP FRET pair GEVIs, e.g. MacQ-mCitrine, (4) single FP with special types of voltage sensing domains, e.g. ASAP1. A majority of GEVIs are based on the  Ciona intestinalis    voltage sensitive phosphatase  (Ci-VSP or Ci-VSD (domain)), which was discovered in 2005 from the genomic  survey of the organism. [ 12]     Some GEVIs may have similar components, but in different positions. For example, ASAP1 and ArcLight both use a VSD and one FP, but the FP of ASAP1 is on the outside of the cell whereas that of ArcLight is on the inside, and the two FPs of VSFP-Butterfly are separated by the VSD, while the two FPs of Mermaid are relatively close to each other.     
Table of GEVIs and their structure GEVI [A]    Year Sensing Reporting Precursor FlaSh [ 8]     1997 Shaker (K+  channel) GFP - VSFP1 [ 13]     2001 Rat Kv2.1 (K+  channel)  FRET  pair: CFP and YFP - SPARC [ 14]     2002 Rat Na+  channel GFP - VSFP2's [ 15]     2007 Ci-VSD  FRET  pair: CFP (Cerulean) and YFP (Citrine) VSFP1 Flare [ 16]     2007 Kv1.4 (K+  channel) YFP FlaSh VSFP3.1 [ 17]     2008 Ci-VSD CFP VSFP2's Mermaid [ 18]     2008 Ci-VSD  FRET  pair: Marine GFP (mUKG) and OFP (mKOκ) VSFP2's hVOS [ 19]     2008  Dipicrylamine   GFP - Red-shifted VSFP's  [ 20]    2009 Ci-VSD RFP/YFP (Citrine, mOrange2, TagRFP, or mKate2) VSFP3.1 PROPS [ 21]     2011 Modified green-absorbing proteorhodopsin (GPR) Same as left - Zahra, Zahra 2 [ 22]     2012 Nv-VSD, Dr-VSD  FRET  pair: CFP (Cerulean) and YFP (Citrine) VSFP2's  ArcLight   [ 23]     2012 Ci-VSD Modified super ecliptic pHluorin - Arch [ 24]     2012  Archaerhodopsin 3   Same as left - ElectricPk [ 25]     2012 Ci-VSD Circularly permuted EGFP VSFP3.1 VSFP-Butterfly [ 26]     2012 Ci-VSD  FRET  pair: YFP (mCitrine) and RFP (mKate2) VSFP2's VSFP-CR [ 27]     2013 Ci-VSD  FRET  pair: GFP (Clover) and RFP(mRuby2) VSFP2.3 Mermaid2 [ 28]     2013 Ci-VSD  FRET  pair: CFP (seCFP2) and YFP Mermaid Mac GEVIs  [ 29]    2014 Mac rhodopsin (FRET acceptor) FRET doner: mCitrine, or mOrange2 - QuasAr1, QuasAr2 [ 30]     2014 Modified Archaerhodopsin 3 Same as left Arch Archer [ 31]     2014 Modified Archaerhodopsin 3 Same as left Arch ASAP1 [ 32]     2014 Modified Gg-VSD Circularly permuted GFP - Ace GEVIs  [ 33]    2015 Modified Ace rhodopsin FRET doner: mNeonGreen Mac GEVIs ArcLightning [ 34]     2015 Ci-VSD Modified super ecliptic pHluorin ArcLight Pado [ 35]     2016 Voltage-gated proton channel Super ecliptic pHluorin - ASAP2f [ 36]     2016 Modified Gg-VSD Circularly permuted GFP ASAP1 FlicR1 [ 37]     2016 Ci-VSD Circularly permuted RFP (mApple) VSFP3.1 Bongwoori [ 38]     2017 Ci-VSD Modified super ecliptic pHluorin  ArcLight   ASAP2s [ 39]     2017 Modified Gg-VSD Circularly permuted GFP ASAP1 ASAP-Y [ 40]     2017 Modified Gg-VSD Circularly permuted GFP ASAP1 (pa)QuasAr3(-s) [ 41]     2019 Modified Archaerhodopsin 3 Same as left QuasAr2 Voltron(-ST) [ 42]     2019 Modified Ace rhodopsin (Ace2) FRET doner: Janelia Fluor (chemical) - ASAP3 [ 43]     2019 Modified Gg-VSD Circularly permuted GFP ASAP2s JEDI-2P [ 44]     2022 Modified Gg-VSD Circularly permuted GFP ASAP2s ASAP4 2023 Modified Gg-VSD Circularly permuted GFP ASAP2s ASAP5 2024 Modified Gg-VSD Circularly permuted GFP ASAP3 
 ↑  Names in italic denote GEVIs not named. Characteristics A GEVI can be evaluated by its many characteristics. These traits can be classified into two categories: performance and compatibility. The performance properties include brightness, photostability , sensitivity, kinetics (speed), linearity of response, etc., while the compatibility properties cover toxicity (phototoxicity ), plasma membrane localization, adaptability of deep-tissue imaging, etc. [ 45]    
 Applications, advantages, and disadvantagesDifferent types of GEVIs are being developed in many biological or physiological research areas. Unlike earlier voltage detecting methods like electrode-based  electrophysiological recordings or voltage sensitive dyes , GEVIs can be expressed stably, and can be targeted to particular cell types. GEVIs have subcellular spatial resolution [ 46]     and temporal resolution as low as 0.2 milliseconds, at least an order of magnitude faster than calcium imaging. This allows for spike detection fidelity comparable to electrode-based electrophysiology but without the invasiveness. [ 33]     Researchers have used them to probe neural communications of an intact brain (of  Drosophila    [ 47]     or mouse [ 48]    ), electrical spiking of bacteria  ( E. coli    [ 21]    ), and human stem-cell derived cardiomyocyte . [ 49]     [ 50]    
Conversely, any form of voltage indication has inherent limitations. [ 51]      Imaging must be fast, or short voltage excursions will be missed.  This means fewer photons per image exposure.  Next, brightness per cell is inherently lower than calcium indicators, as about a 30-fold fewer voltage indicators can fit in the membrane compared to cytosolic calcium indicators.
References  ↑      "Genetically-Encoded Voltage Indicators" . Openoptogenetics.org . Retrieved 8 May  2017 .  ↑     Tian, H.; Davis, H. C.; Wong-Campos, J. D.; Park, P.; Fan, L. Z.; Gmeiner, B.; Begum, S.; Werley, C. A.; Borja, G. B.; Upadhyay, H.; Shah, H.; Jacques, J.; Qi, Y.; Parot, V.; Deisseroth, K.; Cohen, A. E. (2023). "Video-based pooled screening yields improved far-red genetically encoded voltage indicators" . Nature Methods . 20  (7): 1082– 1094. doi :10.1038/s41592-022-01743-5 . PMC     10329731   . PMID     36624211 .  ↑     Piatkevich, K. D.; Jung, E. E.; Straub, C.; Linghu, C.; Park, D.; Suk, H. J.; Hochbaum, D. R.; Goodwin, D.; Pnevmatikakis, E.; Pak, N.; Kawashima, T.; Yang, C. T.; Rhoades, J. L.; Shemesh, O.; Asano, S.; Yoon, Y. G.; Freifeld, L.; Saulnier, J. L.; Riegler, C.; Engert, F.; Hughes, T.; Drobizhev, M.; Szabo, B.; Ahrens, M. B.; Flavell, S. W.; Sabatini, B. L.; Boyden, E. S. (2018). "A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters" . Nature Chemical Biology . 14  (4): 352– 360. doi :10.1038/s41589-018-0004-9 . PMC     5866759   . PMID     29483642 .  ↑     Kannan, M.; Vasan, G.; Haziza, S.; Huang, C.; Chrapkiewicz, R.; Luo, J.; Cardin, J. A.; Schnitzer, M. J.; Pieribone, V. A. (2022). "Dual-polarity voltage imaging of the concurrent dynamics of multiple neuron types" . Science . 378  (6619) eabm8797. doi :10.1126/science.abm8797 . PMC     9703638   . PMID     36378956 .  ↑     Evans, S. W.; et  al. (2023). "A positively tuned voltage indicator for extended electrical recordings in the brain" . Nature Methods . 20  (7): 1104– 1113. doi :10.1038/s41592-023-01913-z . PMC     10627146   . PMID     37429962 .  ↑     Hao, Y. A.; Lee, S.; Roth, R. H.; Natale, S.; Gomez, L.; Taxidis, J.; O'Neill, P. S.; Villette, V.; Bradley, J.; Wang, Z.; Jiang, D.; Zhang, G.; Sheng, M.; Lu, D.; Boyden, E.; Delvendahl, I.; Golshani, P.; Wernig, M.; Feldman, D. E.; Ji, N.; Ding, J.; Südhof, T. C.; Clandinin, T. R.; Lin, M. Z. (2024). "A fast and responsive voltage indicator with enhanced sensitivity for unitary synaptic events". Neuron . 112  (22): 3680–3696.e8. doi :10.1016/j.neuron.2024.08.019 . PMC    11581914. PMID     39305894 .  ↑     Cohen LB, Keynes RD, Hille B (1968). "Light scattering and birefringence changes during nerve activity".  Nature   . 218  (5140): 438– 441. Bibcode :1968Natur.218..438C . doi :10.1038/218438a0 . PMID     5649693 . S2CID     4288546 .  1    2     Siegel MS, Isacoff EY (1997). "A genetically encoded optical probe of membrane voltage" .  Neuron   . 19  (4): 735– 741. doi : 10.1016/S0896-6273(00)80955-1   . PMID     9354320 .  ↑     Piatkevich, Kiryl D.; Jung, Erica E.; Straub, Christoph; Linghu, Changyang; Park, Demian; Suk, Ho-Jun; Hochbaum, Daniel R.; Goodwin, Daniel; Pnevmatikakis, Eftychios; Pak, Nikita; Kawashima, Takashi; Yang, Chao-Tsung; Rhoades, Jeffrey L.; Shemesh, Or; Asano, Shoh; Yoon, Young-Gyu; Freifeld, Limor; Saulnier, Jessica L.; Riegler, Clemens; Engert, Florian; Hughes, Thom; Drobizhev, Mikhail; Szabo, Balint; Ahrens, Misha B.; Flavell, Steven W.; Sabatini, Bernardo L.; Boyden, Edward S. (April 2018). "A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters" . Nature Chemical Biology . 14  (4): 352– 360. doi :10.1038/s41589-018-0004-9 . ISSN     1552-4469 . PMC     5866759   . PMID     29483642 .  ↑     Platisa J, Vasan G, Yang A, et  al. (2017). "Directed Evolution of Key Residues in Fluorescent Protein Inverses the Polarity of Voltage Sensitivity in the Genetically Encoded Indicator ArcLight" .  ACS Chem. Neurosci.   8  (3): 513– 523. doi :10.1021/acschemneuro.6b00234 . PMC     5355904   . PMID     28045247 .  ↑     Gong Y (2015). "The evolving capabilities of rhodopsin-based genetically encoded voltage indicators" .  Curr. Opin. Chem. Biol.   27 : 84– 89. doi :10.1016/j.cbpa.2015.05.006 . PMC     4571180   . PMID     26143170 .  ↑     Murata Y, Iwasaki H, Sasaki M, et  al. (2005). "Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor".  Nature   . 435  (7046): 1239– 1243. Bibcode :2005Natur.435.1239M . doi :10.1038/nature03650 . PMID     15902207 . S2CID     4427755 .  ↑     Sakai R, Repunte-Canonigo V, Raj CD, et  al. (2001). "Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein".  Eur. J. Neurosci.   13  (12): 2314– 2318. doi :10.1046/j.0953-816x.2001.01617.x . PMID     11454036 . S2CID     10969720 .  ↑     Ataka K, Pieribone VA (2002). "A genetically targetable fluorescent probe of channel gating with rapid kinetics" .  Biophys. J.   82  (1 Pt 1): 509– 516. Bibcode :2002BpJ....82..509A . doi :10.1016/S0006-3495(02)75415-5 . PMC     1302490   . PMID     11751337 .  ↑     Dimitrov D, He Y, Mutoh H, et  al. (2007). "Engineering and characterization of an enhanced fluorescent protein voltage sensor" .  PLoS One   . 2  (5) e440. Bibcode :2007PLoSO...2..440D . doi : 10.1371/journal.pone.0000440   . PMC     1857823   . PMID     17487283 .  ↑     Baker BJ, Lee H, Pieribone VA, et  al. (2007). "Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells".  J. Neurosci. Methods   . 161  (1): 32– 38. doi :10.1016/j.jneumeth.2006.10.005 . PMID     17126911 . S2CID     8540453 .  ↑     Lundby A, Mutoh H, Dimitrov D, et  al. (2008). "Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements" .  PLoS One   . 3  (6) e2514. Bibcode :2008PLoSO...3.2514L . doi : 10.1371/journal.pone.0002514   . PMC     2429971   . PMID     18575613 .  ↑     Tsutsui H, Karasawa S, Okamura Y, et  al. (2008). "Improving membrane voltage measurements using FRET with new fluorescent proteins".  Nat. Methods   . 5  (8): 683– 685. doi :10.1038/nmeth.1235 . PMID     18622396 . S2CID     30661869 .  ↑     Sjulson L, Miesenböck G (2008). "Rational optimization and imaging in vivo of a genetically encoded optical voltage reporter" .  J. Neurosci.   28  (21): 5582– 5593. doi :10.1523/JNEUROSCI.0055-08.2008 . PMC     2714581   . PMID     18495892 .  ↑     Perron A, Mutoh H, Launey T, et  al. (2009). "Red-shifted voltage-sensitive fluorescent proteins" .  Chem. Biol.   16  (12): 1268– 1277. doi :10.1016/j.chembiol.2009.11.014 . PMC     2818747   . PMID     20064437 .  1    2     Kralj JM, Hochbaum DR, Douglass AD, et  al. (2011). "Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein".  Science   . 333  (6040): 345– 348. Bibcode :2011Sci...333..345K . doi :10.1126/science.1204763 . PMID     21764748 . S2CID     2195943 .  ↑     Baker BJ, Jin L, Han Z, et  al. (2012). "Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics" .  J. Neurosci. Methods   . 208  (2): 190– 196. doi :10.1016/j.jneumeth.2012.05.016 . PMC     3398169   . PMID     22634212 .  ↑     Jin L, Han Z, Platisa J, et  al. (2012). "Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe" .  Neuron   . 75  (5): 779– 785. doi :10.1016/j.neuron.2012.06.040 . PMC     3439164   . PMID     22958819 .  ↑     Kralj JM, Douglass AD, Hochbaum DR, et  al. (2011). "Optical recording of action potentials in mammalian neurons using a microbial rhodopsin" .  Nat. Methods   . 9  (1): 90– 95. doi :10.1038/nmeth.1782 . PMC     3248630   . PMID     22120467 .  ↑     Barnett L, Platisa J, Popovic M, et  al. (2012). "A fluorescent, genetically-encoded voltage probe capable of resolving action potentials" .  PLoS One   . 7  (9) e43454. Bibcode :2012PLoSO...743454B . doi : 10.1371/journal.pone.0043454   . PMC     3435330   . PMID     22970127 .  ↑     Akemann W, Mutoh H, Perron A, et  al. (2012). "Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein".  J. Neurophysiol.   108  (8): 2323– 2337. doi :10.1152/jn.00452.2012 . PMID     22815406 .  ↑     Lam AJ, St-Pierre F, Gong Y, et  al. (2013). "Improving FRET Dynamic Range with Bright Green and Red Fluorescent Proteins" .  Biophys. J.   104  (2): 1005– 1012. Bibcode :2013BpJ...104..683L . doi :10.1016/j.bpj.2012.11.3773 . PMC     3461113   . PMID     22961245 .  ↑     Tsutsui H, Jinno Y, Tomita A, et  al. (2013). "Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase" .  J. Physiol. (Lond.)   . 591  (18): 4427– 4437. doi :10.1113/jphysiol.2013.257048 . PMC     3784191   . PMID     23836686 .  ↑     Gong Y, Wagner MJ, Zhong Li J, et  al. (2014). "Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors" .  Nat. Commun.   5  3674. Bibcode :2014NatCo...5.3674G . doi :10.1038/ncomms4674 . PMC     4247277   . PMID     24755708 .  ↑     Hochbaum DR, Zhao Y, Farhi SL, et  al. (2014). "All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins" .  Nat. Methods   . 11  (8): 825– 833. doi :10.1038/nmeth.3000 . PMC     4117813   . PMID     24952910 .  ↑     Flytzanis NC, Bedbrook CN, Chiu H, et  al. (2014). "Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons" .  Nat. Commun.   5  4894. Bibcode :2014NatCo...5.4894F . doi :10.1038/ncomms5894 . PMC     4166526   . PMID     25222271 .  ↑     St-Pierre F, Marshall JD, Yang Y, et  al. (2014). "High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor" .  Nat. Neurosci.   17  (6): 884– 889. doi :10.1038/nn.3709 . PMC     4494739   . PMID     24755780 .  1    2     Gong Y, Huang C, Li JZ, et  al. (2015). "High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor" .  Science   . 350  (6266): 1361– 1366. Bibcode :2015Sci...350.1361G . doi :10.1126/science.aab0810 . PMC     4904846   . PMID     26586188 .  ↑     Treger JS, Priest MF, Bezanilla F (2015). "Single-molecule fluorimetry and gating currents inspire an improved optical voltage indicator" .  eLife   . 4  e10482. doi : 10.7554/eLife.10482   . PMC     4658195   . PMID     26599732 .  ↑     Kang BE, Baker BJ (2016). "Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions" .  Sci. Rep.   6  23865. Bibcode :2016NatSR...623865K . doi :10.1038/srep23865 . PMC     4878010   . PMID     27040905 .  ↑     Yang HH, St-Pierre F, Sun X, et  al. (2016). "Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo" .  Cell   . 166  (1): 245– 257. doi :10.1016/j.cell.2016.05.031 . PMC     5606228   . PMID     27264607 .  ↑     Abdelfattah AS, Farhi SL, Zhao Y, et  al. (2016). "A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices" .  J. Neurosci.   36  (8): 2458– 2472. doi :10.1523/JNEUROSCI.3484-15.2016 . PMC     4764664   . PMID     26911693 .  ↑     Lee S, Geiller T, Jung A, et  al. (2017). "Improving a genetically encoded voltage indicator by modifying the cytoplasmic charge composition" .  Sci. Rep.   7  (1) 8286. Bibcode :2017NatSR...7.8286L . doi :10.1038/s41598-017-08731-2 . PMC     5557843   . PMID     28811673 .  ↑     Chamberland, S; Yang, HH; Pan, MM; Evans, SW; Guan, S; Chavarha, M; Yang, Y; Salesse, C; Wu, H; Wu, JC; Clandinin, TR; Toth, K; Lin, MZ; St-Pierre, F (27 July 2017). "Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators" . eLife . 6 . doi : 10.7554/eLife.25690   . PMC     5584994   . PMID     28749338 .  ↑     Lee EE, Bezanilla F (2017). "Biophysical Characterization of Genetically Encoded Voltage Sensor ASAP1: Dynamic Range Improvement" .  Biophys. J.   113  (10): 2178– 2181. Bibcode :2017BpJ...113.2178L . doi :10.1016/j.bpj.2017.10.018 . PMC     5700382   . PMID     29108650 .  ↑     Adam Y, Kim JJ, Lou S, et  al. (2019). "Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics" .  Nature   . 569  (7756): 413– 417. Bibcode :2019Natur.569..413A . doi :10.1038/s41586-019-1166-7 . PMC     6613938   . PMID     31043747 .   "We fused paQuasAr3 with a trafficking motif from the soma-localized KV2.1 potassium channel, which led to largely soma-localized expression (Fig. 2a, b). We called this construct paQuasAr3-s.", "We called QuasAr3(V59A) 'photoactivated QuasAr3' (paQuasAr3).", and "QuasAr2(K171R)-TS-citrine-TS-TS-TS-ER2, which we call QuasAr3." ↑     Abdelfattah, Ahmed S.; Kawashima, Takashi; Singh, Amrita; Novak, Ondrej; Liu, Hui; Shuai, Yichun; Huang, Yi-Chieh; Campagnola, Luke; Seeman, Stephanie C.; Yu, Jianing; Zheng, Jihong; Grimm, Jonathan B.; Patel, Ronak; Friedrich, Johannes; Mensh, Brett D.; Paninski, Liam; Macklin, John J.; Murphy, Gabe J.; Podgorski, Kaspar; Lin, Bei-Jung; Chen, Tsai-Wen; Turner, Glenn C.; Liu, Zhe; Koyama, Minoru; Svoboda, Karel; Ahrens, Misha B.; Lavis, Luke D.; Schreiter, Eric R (2019). "Bright and photostable chemigenetic indicators for extended in vivo voltage imaging". Science . 365  (6454). American Association for the Advancement of Science: 699– 704. Bibcode :2019Sci...365..699A . doi :10.1126/science.aav6416 . PMID     31371562 .  ↑     Villette, V; Chavarha, M; Dimov, IK; Bradley, J; Pradhan, L; Mathieu, B; Evans, SW; Chamberland, S; Shi, D; Yang, R; Kim, BB; Ayon, A; Jalil, A; St-Pierre, F; Schnitzer, MJ; Bi, G; Toth, K; Ding, J; Dieudonné, S; Lin, MZ (12 December 2019). "Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice" . Cell . 179  (7): 1590–1608.e23. doi :10.1016/j.cell.2019.11.004 . PMC     6941988   . PMID     31835034 .  ↑     Liu, Zhuohe; Lu, Xiaoyu; Villette, Vincent; Gou, Yueyang; Colbert, Kevin L.; Lai, Shujuan; Guan, Sihui; Land, Michelle A.; Lee, Jihwan; Assefa, Tensae; Zollinger, Daniel R.; Korympidou, Maria M.; Vlasits, Anna L.; Pang, Michelle M.; Su, Sharon (2022-08-18). "Sustained deep-tissue voltage recording using a fast indicator evolved for two-photon microscopy" . Cell . 185  (18): 3408–3425.e29. doi :10.1016/j.cell.2022.07.013 . ISSN     0092-8674 . PMC     9563101   . PMID     35985322 .  ↑     Yang HH, St-Pierre F (2016). "Genetically Encoded Voltage Indicators: Opportunities and Challenges" .  J. Neurosci.   36  (39): 9977– 9989. doi :10.1523/JNEUROSCI.1095-16.2016 . PMC     5039263   . PMID     27683896 .  ↑     Kaschula R, Salecker I (2016). "Neuronal Computations Made Visible with Subcellular Resolution" .  Cell   . 166  (1): 18– 20. doi : 10.1016/j.cell.2016.06.022   . PMID     27368098 .  ↑     Cao G, Platisa J, Pieribone VA, et  al. (2013). "Genetically targeted optical electrophysiology in intact neural circuits" .  Cell   . 154  (4): 904– 913. doi :10.1016/j.cell.2013.07.027 . PMC     3874294   . PMID     23932121 .  ↑     Knöpfel T, Gallero-Salas Y, Song C (2015). "Genetically encoded voltage indicators for large scale cortical imaging come of age".  Curr. Opin. Chem. Biol.   27 : 75– 83. doi :10.1016/j.cbpa.2015.06.006 . PMID     26115448 .  ↑     Kaestner L, Tian Q, Kaiser E, et  al. (2015). "Genetically Encoded Voltage Indicators in Circulation Research" .  Int. J. Mol. Sci.   16  (9): 21626– 21642. doi : 10.3390/ijms160921626   . PMC     4613271   . PMID     26370981 .  ↑     Zhang, Joe Z.; Termglinchan, Vittavat; Shao, Ning-Yi; Itzhaki, Ilanit; Liu, Chun; Ma, Ning; Tian, Lei; Wang, Vicky Y.; Chang, Alex C. Y.; Guo, Hongchao; Kitani, Tomoya (2019-05-02). "A Human iPSC Double-Reporter System Enables Purification of Cardiac Lineage Subpopulations with Distinct Function and Drug Response Profiles" . Cell Stem Cell . 24  (5): 802–811.e5. doi : 10.1016/j.stem.2019.02.015   . ISSN     1934-5909 . PMC     6499654   . PMID     30880024 .  ↑     Kulkarni, Rishikesh U; Miller, Evan W (2017). "Voltage imaging: pitfalls and potential" . Biochemistry . 56  (39). ACS Publications: 5171– 5177. doi :10.1021/acs.biochem.7b00490 . PMC     5715730   . PMID     28745864 . 
Optogenetic actuators Optogenetic sensors Related techniques 
This page is based on this 
Wikipedia article  Text is available under the 
CC BY-SA 4.0  license; additional terms may apply.
Images, videos and audio are available under their respective licenses.