Genetically encoded voltage indicator

Last updated

Genetically encoded voltage indicator (or GEVI) is a protein that can sense membrane potential in a cell and relate the change in voltage to a form of output, often fluorescent level. [1] It is a promising optogenetic recording tool that enables recording of electrophysiological signals from cultured cells and live animals. Examples of GEVI families include Quasar/Archon, [2] [3] Ace-mNeon, [4] and ASAP. [5] [6]

Contents

History

Even though the idea of optical measurement of neuronal activity was proposed in the late 1960s, [7] the first successful GEVI that was convenient enough to put into actual use was not developed until technologies of genetic engineering had become mature in the late 1990s. The first GEVI, coined FlaSh, [8] was constructed by fusing a modified green fluorescent protein with a voltage-sensitive K+ channel (Shaker). Unlike fluorescent proteins, the discovery of new GEVIs are seldom inspired by nature, for it is hard to find an organism which naturally has the ability to change its fluorescence based on voltage. Therefore, new GEVIs are mostly the products of genetic and protein engineering.

Two methods can be utilized to find novel GEVIs: rational design and directed evolution. The former method contributes to the most of new GEVI variants, but recent research using directed evolution have shown promising results in GEVI optimization. [9] [10]

Structure

Conceptually, a GEVI should sense the voltage difference across the cell membrane and report it by a change in fluorescence. Many different structures can be used for the voltage sensing function, [11] but one essential feature is that it must be imbedded in the cell membrane. Usually, the voltage-sensing domain (VSD) of a GEVI spans across the membrane, and is connected to the fluorescent protein (FP). However, it is not necessary that sensing and reporting must happen in different structures - see, for example, the Archons.

By structure, GEVIs can be classified into four categories based on the current findings: (1) GEVIs contain a fluorescent protein FRET pair, e.g. VSFP1, (2) Single opsin GEVIs, e.g. Arch, (3) Opsin-FP FRET pair GEVIs, e.g. MacQ-mCitrine, (4) single FP with special types of voltage sensing domains, e.g. ASAP1. A majority of GEVIs are based on the Ciona intestinalis voltage sensitive phosphatase (Ci-VSP or Ci-VSD (domain)), which was discovered in 2005 from the genomic survey of the organism. [12] Some GEVIs may have similar components, but in different positions. For example, ASAP1 and ArcLight both use a VSD and one FP, but the FP of ASAP1 is on the outside of the cell whereas that of ArcLight is on the inside, and the two FPs of VSFP-Butterfly are separated by the VSD, while the two FPs of Mermaid are relatively close to each other.

Table of GEVIs and their structure
GEVI [A] YearSensingReportingPrecursor
FlaSh [8] 1997Shaker (K+ channel)GFP-
VSFP1 [13] 2001Rat Kv2.1 (K+ channel) FRET pair: CFP and YFP-
SPARC [14] 2002Rat Na+ channelGFP-
VSFP2's [15] 2007Ci-VSD FRET pair: CFP (Cerulean) and YFP (Citrine)VSFP1
Flare [16] 2007Kv1.4 (K+ channel)YFPFlaSh
VSFP3.1 [17] 2008Ci-VSDCFPVSFP2's
Mermaid [18] 2008Ci-VSD FRET pair: Marine GFP (mUKG) and OFP (mKOκ)VSFP2's
hVOS [19] 2008 Dipicrylamine GFP-
Red-shifted VSFP's [20] 2009Ci-VSDRFP/YFP (Citrine, mOrange2, TagRFP, or mKate2)VSFP3.1
PROPS [21] 2011Modified green-absorbing proteorhodopsin (GPR)Same as left-
Zahra, Zahra 2 [22] 2012Nv-VSD, Dr-VSD FRET pair: CFP (Cerulean) and YFP (Citrine)VSFP2's
ArcLight [23] 2012Ci-VSDModified super ecliptic pHluorin-
Arch [24] 2012 Archaerhodopsin 3 Same as left-
ElectricPk [25] 2012Ci-VSDCircularly permuted EGFPVSFP3.1
VSFP-Butterfly [26] 2012Ci-VSD FRET pair: YFP (mCitrine) and RFP (mKate2)VSFP2's
VSFP-CR [27] 2013Ci-VSD FRET pair: GFP (Clover) and RFP(mRuby2)VSFP2.3
Mermaid2 [28] 2013Ci-VSD FRET pair: CFP (seCFP2) and YFPMermaid
Mac GEVIs [29] 2014Mac rhodopsin (FRET acceptor)FRET doner: mCitrine, or mOrange2-
QuasAr1, QuasAr2 [30] 2014Modified Archaerhodopsin 3Same as leftArch
Archer [31] 2014Modified Archaerhodopsin 3Same as leftArch
ASAP1 [32] 2014Modified Gg-VSDCircularly permuted GFP-
Ace GEVIs [33] 2015Modified Ace rhodopsinFRET doner: mNeonGreenMac GEVIs
ArcLightning [34] 2015Ci-VSDModified super ecliptic pHluorinArcLight
Pado [35] 2016Voltage-gated proton channelSuper ecliptic pHluorin-
ASAP2f [36] 2016Modified Gg-VSDCircularly permuted GFPASAP1
FlicR1 [37] 2016Ci-VSDCircularly permuted RFP (mApple)VSFP3.1
Bongwoori [38] 2017Ci-VSDModified super ecliptic pHluorin ArcLight
ASAP2s [39] 2017Modified Gg-VSDCircularly permuted GFPASAP1
ASAP-Y [40] 2017Modified Gg-VSDCircularly permuted GFPASAP1
(pa)QuasAr3(-s) [41] 2019Modified Archaerhodopsin 3Same as leftQuasAr2
Voltron(-ST) [42] 2019Modified Ace rhodopsin (Ace2)FRET doner: Janelia Fluor (chemical)-
ASAP3 [43] 2019Modified Gg-VSDCircularly permuted GFPASAP2s
JEDI-2P [44] 2022Modified Gg-VSDCircularly permuted GFPASAP2s
ASAP42023Modified Gg-VSDCircularly permuted GFPASAP2s
ASAP52024Modified Gg-VSDCircularly permuted GFPASAP3
  1. Names in italic denote GEVIs not named.

Characteristics

A GEVI can be evaluated by its many characteristics. These traits can be classified into two categories: performance and compatibility. The performance properties include brightness, photostability, sensitivity, kinetics (speed), linearity of response, etc., while the compatibility properties cover toxicity (phototoxicity), plasma membrane localization, adaptability of deep-tissue imaging, etc. [45]

Applications, advantages, and disadvantages

Different types of GEVIs are being developed in many biological or physiological research areas. Unlike earlier voltage detecting methods like electrode-based electrophysiological recordings or voltage sensitive dyes, GEVIs can be expressed stably, and can be targeted to particular cell types. GEVIs have subcellular spatial resolution [46] and temporal resolution as low as 0.2 milliseconds, at least an order of magnitude faster than calcium imaging. This allows for spike detection fidelity comparable to electrode-based electrophysiology but without the invasiveness. [33] Researchers have used them to probe neural communications of an intact brain (of Drosophila [47] or mouse [48] ), electrical spiking of bacteria ( E. coli [21] ), and human stem-cell derived cardiomyocyte. [49] [50]

Conversely, any form of voltage indication has inherent limitations. [51] Imaging must be fast, or short voltage excursions will be missed. This means fewer photons per image exposure. Next, brightness per cell is inherently lower than calcium indicators, as about a 30-fold fewer voltage indicators can fit in the membrane compared to cytosolic calcium indicators.

References

  1. "Genetically-Encoded Voltage Indicators". Openoptogenetics.org. Retrieved 8 May 2017.
  2. Tian, H.; Davis, H. C.; Wong-Campos, J. D.; Park, P.; Fan, L. Z.; Gmeiner, B.; Begum, S.; Werley, C. A.; Borja, G. B.; Upadhyay, H.; Shah, H.; Jacques, J.; Qi, Y.; Parot, V.; Deisseroth, K.; Cohen, A. E. (2023). "Video-based pooled screening yields improved far-red genetically encoded voltage indicators". Nature Methods. 20 (7): 1082–1094. doi:10.1038/s41592-022-01743-5. PMC   10329731 . PMID   36624211.
  3. Piatkevich, K. D.; Jung, E. E.; Straub, C.; Linghu, C.; Park, D.; Suk, H. J.; Hochbaum, D. R.; Goodwin, D.; Pnevmatikakis, E.; Pak, N.; Kawashima, T.; Yang, C. T.; Rhoades, J. L.; Shemesh, O.; Asano, S.; Yoon, Y. G.; Freifeld, L.; Saulnier, J. L.; Riegler, C.; Engert, F.; Hughes, T.; Drobizhev, M.; Szabo, B.; Ahrens, M. B.; Flavell, S. W.; Sabatini, B. L.; Boyden, E. S. (2018). "A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters". Nature Chemical Biology. 14 (4): 352–360. doi:10.1038/s41589-018-0004-9. PMC   5866759 . PMID   29483642.
  4. Kannan, M.; Vasan, G.; Haziza, S.; Huang, C.; Chrapkiewicz, R.; Luo, J.; Cardin, J. A.; Schnitzer, M. J.; Pieribone, V. A. (2022). "Dual-polarity voltage imaging of the concurrent dynamics of multiple neuron types". Science. 378 (6619): eabm8797. doi:10.1126/science.abm8797. PMC   9703638 . PMID   36378956.
  5. Evans, S. W.; et al. (2023). "A positively tuned voltage indicator for extended electrical recordings in the brain". Nature Methods. 20 (7): 1104–1113. doi:10.1038/s41592-023-01913-z. PMC   10627146 . PMID   37429962.
  6. Hao, Y. A.; Lee, S.; Roth, R. H.; Natale, S.; Gomez, L.; Taxidis, J.; O'Neill, P. S.; Villette, V.; Bradley, J.; Wang, Z.; Jiang, D.; Zhang, G.; Sheng, M.; Lu, D.; Boyden, E.; Delvendahl, I.; Golshani, P.; Wernig, M.; Feldman, D. E.; Ji, N.; Ding, J.; Südhof, T. C.; Clandinin, T. R.; Lin, M. Z. (2024). "A fast and responsive voltage indicator with enhanced sensitivity for unitary synaptic events". Neuron. 112 (22): 3680–3696.e8. doi:10.1016/j.neuron.2024.08.019. PMC  11581914. PMID   39305894.
  7. Cohen LB, Keynes RD, Hille B (1968). "Light scattering and birefringence changes during nerve activity". Nature . 218 (5140): 438–441. Bibcode:1968Natur.218..438C. doi:10.1038/218438a0. PMID   5649693. S2CID   4288546.
  8. 1 2 Siegel MS, Isacoff EY (1997). "A genetically encoded optical probe of membrane voltage". Neuron . 19 (4): 735–741. doi: 10.1016/S0896-6273(00)80955-1 . PMID   9354320.
  9. Piatkevich, Kiryl D.; Jung, Erica E.; Straub, Christoph; Linghu, Changyang; Park, Demian; Suk, Ho-Jun; Hochbaum, Daniel R.; Goodwin, Daniel; Pnevmatikakis, Eftychios; Pak, Nikita; Kawashima, Takashi; Yang, Chao-Tsung; Rhoades, Jeffrey L.; Shemesh, Or; Asano, Shoh; Yoon, Young-Gyu; Freifeld, Limor; Saulnier, Jessica L.; Riegler, Clemens; Engert, Florian; Hughes, Thom; Drobizhev, Mikhail; Szabo, Balint; Ahrens, Misha B.; Flavell, Steven W.; Sabatini, Bernardo L.; Boyden, Edward S. (April 2018). "A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters". Nature Chemical Biology. 14 (4): 352–360. doi:10.1038/s41589-018-0004-9. ISSN   1552-4469. PMC   5866759 . PMID   29483642.
  10. Platisa J, Vasan G, Yang A, et al. (2017). "Directed Evolution of Key Residues in Fluorescent Protein Inverses the Polarity of Voltage Sensitivity in the Genetically Encoded Indicator ArcLight". ACS Chem. Neurosci. 8 (3): 513–523. doi:10.1021/acschemneuro.6b00234. PMC   5355904 . PMID   28045247.
  11. Gong Y (2015). "The evolving capabilities of rhodopsin-based genetically encoded voltage indicators". Curr. Opin. Chem. Biol. 27: 84–89. doi:10.1016/j.cbpa.2015.05.006. PMC   4571180 . PMID   26143170.
  12. Murata Y, Iwasaki H, Sasaki M, et al. (2005). "Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor". Nature . 435 (7046): 1239–1243. Bibcode:2005Natur.435.1239M. doi:10.1038/nature03650. PMID   15902207. S2CID   4427755.
  13. Sakai R, Repunte-Canonigo V, Raj CD, et al. (2001). "Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein". Eur. J. Neurosci. 13 (12): 2314–2318. doi:10.1046/j.0953-816x.2001.01617.x. PMID   11454036. S2CID   10969720.
  14. Ataka K, Pieribone VA (2002). "A genetically targetable fluorescent probe of channel gating with rapid kinetics". Biophys. J. 82 (1 Pt 1): 509–516. Bibcode:2002BpJ....82..509A. doi:10.1016/S0006-3495(02)75415-5. PMC   1302490 . PMID   11751337.
  15. Dimitrov D, He Y, Mutoh H, et al. (2007). "Engineering and characterization of an enhanced fluorescent protein voltage sensor". PLoS One . 2 (5): e440. Bibcode:2007PLoSO...2..440D. doi: 10.1371/journal.pone.0000440 . PMC   1857823 . PMID   17487283.
  16. Baker BJ, Lee H, Pieribone VA, et al. (2007). "Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells". J. Neurosci. Methods . 161 (1): 32–38. doi:10.1016/j.jneumeth.2006.10.005. PMID   17126911. S2CID   8540453.
  17. Lundby A, Mutoh H, Dimitrov D, et al. (2008). "Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements". PLoS One . 3 (6): e2514. Bibcode:2008PLoSO...3.2514L. doi: 10.1371/journal.pone.0002514 . PMC   2429971 . PMID   18575613.
  18. Tsutsui H, Karasawa S, Okamura Y, et al. (2008). "Improving membrane voltage measurements using FRET with new fluorescent proteins". Nat. Methods . 5 (8): 683–685. doi:10.1038/nmeth.1235. PMID   18622396. S2CID   30661869.
  19. Sjulson L, Miesenböck G (2008). "Rational optimization and imaging in vivo of a genetically encoded optical voltage reporter". J. Neurosci. 28 (21): 5582–5593. doi:10.1523/JNEUROSCI.0055-08.2008. PMC   2714581 . PMID   18495892.
  20. Perron A, Mutoh H, Launey T, et al. (2009). "Red-shifted voltage-sensitive fluorescent proteins". Chem. Biol. 16 (12): 1268–1277. doi:10.1016/j.chembiol.2009.11.014. PMC   2818747 . PMID   20064437.
  21. 1 2 Kralj JM, Hochbaum DR, Douglass AD, et al. (2011). "Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein". Science . 333 (6040): 345–348. Bibcode:2011Sci...333..345K. doi:10.1126/science.1204763. PMID   21764748. S2CID   2195943.
  22. Baker BJ, Jin L, Han Z, et al. (2012). "Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics". J. Neurosci. Methods . 208 (2): 190–196. doi:10.1016/j.jneumeth.2012.05.016. PMC   3398169 . PMID   22634212.
  23. Jin L, Han Z, Platisa J, et al. (2012). "Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe". Neuron . 75 (5): 779–785. doi:10.1016/j.neuron.2012.06.040. PMC   3439164 . PMID   22958819.
  24. Kralj JM, Douglass AD, Hochbaum DR, et al. (2011). "Optical recording of action potentials in mammalian neurons using a microbial rhodopsin". Nat. Methods . 9 (1): 90–95. doi:10.1038/nmeth.1782. PMC   3248630 . PMID   22120467.
  25. Barnett L, Platisa J, Popovic M, et al. (2012). "A fluorescent, genetically-encoded voltage probe capable of resolving action potentials". PLoS One . 7 (9): e43454. Bibcode:2012PLoSO...743454B. doi: 10.1371/journal.pone.0043454 . PMC   3435330 . PMID   22970127.
  26. Akemann W, Mutoh H, Perron A, et al. (2012). "Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein". J. Neurophysiol. 108 (8): 2323–2337. doi:10.1152/jn.00452.2012. PMID   22815406.
  27. Lam AJ, St-Pierre F, Gong Y, et al. (2013). "Improving FRET Dynamic Range with Bright Green and Red Fluorescent Proteins". Biophys. J. 104 (2): 1005–1012. Bibcode:2013BpJ...104..683L. doi:10.1016/j.bpj.2012.11.3773. PMC   3461113 . PMID   22961245.
  28. Tsutsui H, Jinno Y, Tomita A, et al. (2013). "Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase". J. Physiol. (Lond.) . 591 (18): 4427–4437. doi:10.1113/jphysiol.2013.257048. PMC   3784191 . PMID   23836686.
  29. Gong Y, Wagner MJ, Zhong Li J, et al. (2014). "Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors". Nat. Commun. 5 3674. Bibcode:2014NatCo...5.3674G. doi:10.1038/ncomms4674. PMC   4247277 . PMID   24755708.
  30. Hochbaum DR, Zhao Y, Farhi SL, et al. (2014). "All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins". Nat. Methods . 11 (8): 825–833. doi:10.1038/nmeth.3000. PMC   4117813 . PMID   24952910.
  31. Flytzanis NC, Bedbrook CN, Chiu H, et al. (2014). "Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons". Nat. Commun. 5 4894. Bibcode:2014NatCo...5.4894F. doi:10.1038/ncomms5894. PMC   4166526 . PMID   25222271.
  32. St-Pierre F, Marshall JD, Yang Y, et al. (2014). "High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor". Nat. Neurosci. 17 (6): 884–889. doi:10.1038/nn.3709. PMC   4494739 . PMID   24755780.
  33. 1 2 Gong Y, Huang C, Li JZ, et al. (2015). "High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor". Science . 350 (6266): 1361–1366. Bibcode:2015Sci...350.1361G. doi:10.1126/science.aab0810. PMC   4904846 . PMID   26586188.
  34. Treger JS, Priest MF, Bezanilla F (2015). "Single-molecule fluorimetry and gating currents inspire an improved optical voltage indicator". eLife . 4: e10482. doi: 10.7554/eLife.10482 . PMC   4658195 . PMID   26599732.
  35. Kang BE, Baker BJ (2016). "Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions". Sci. Rep. 6 23865. Bibcode:2016NatSR...623865K. doi:10.1038/srep23865. PMC   4878010 . PMID   27040905.
  36. Yang HH, St-Pierre F, Sun X, et al. (2016). "Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo". Cell . 166 (1): 245–257. doi:10.1016/j.cell.2016.05.031. PMC   5606228 . PMID   27264607.
  37. Abdelfattah AS, Farhi SL, Zhao Y, et al. (2016). "A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices". J. Neurosci. 36 (8): 2458–2472. doi:10.1523/JNEUROSCI.3484-15.2016. PMC   4764664 . PMID   26911693.
  38. Lee S, Geiller T, Jung A, et al. (2017). "Improving a genetically encoded voltage indicator by modifying the cytoplasmic charge composition". Sci. Rep. 7 (1) 8286. Bibcode:2017NatSR...7.8286L. doi:10.1038/s41598-017-08731-2. PMC   5557843 . PMID   28811673.
  39. Chamberland, S; Yang, HH; Pan, MM; Evans, SW; Guan, S; Chavarha, M; Yang, Y; Salesse, C; Wu, H; Wu, JC; Clandinin, TR; Toth, K; Lin, MZ; St-Pierre, F (27 July 2017). "Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators". eLife. 6. doi: 10.7554/eLife.25690 . PMC   5584994 . PMID   28749338.
  40. Lee EE, Bezanilla F (2017). "Biophysical Characterization of Genetically Encoded Voltage Sensor ASAP1: Dynamic Range Improvement". Biophys. J. 113 (10): 2178–2181. Bibcode:2017BpJ...113.2178L. doi:10.1016/j.bpj.2017.10.018. PMC   5700382 . PMID   29108650.
  41. Adam Y, Kim JJ, Lou S, et al. (2019). "Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics". Nature . 569 (7756): 413–417. Bibcode:2019Natur.569..413A. doi:10.1038/s41586-019-1166-7. PMC   6613938 . PMID   31043747. "We fused paQuasAr3 with a trafficking motif from the soma-localized KV2.1 potassium channel, which led to largely soma-localized expression (Fig. 2a, b). We called this construct paQuasAr3-s.", "We called QuasAr3(V59A) 'photoactivated QuasAr3' (paQuasAr3).", and "QuasAr2(K171R)-TS-citrine-TS-TS-TS-ER2, which we call QuasAr3."
  42. Abdelfattah, Ahmed S.; Kawashima, Takashi; Singh, Amrita; Novak, Ondrej; Liu, Hui; Shuai, Yichun; Huang, Yi-Chieh; Campagnola, Luke; Seeman, Stephanie C.; Yu, Jianing; Zheng, Jihong; Grimm, Jonathan B.; Patel, Ronak; Friedrich, Johannes; Mensh, Brett D.; Paninski, Liam; Macklin, John J.; Murphy, Gabe J.; Podgorski, Kaspar; Lin, Bei-Jung; Chen, Tsai-Wen; Turner, Glenn C.; Liu, Zhe; Koyama, Minoru; Svoboda, Karel; Ahrens, Misha B.; Lavis, Luke D.; Schreiter, Eric R (2019). "Bright and photostable chemigenetic indicators for extended in vivo voltage imaging". Science. 365 (6454). American Association for the Advancement of Science: 699–704. Bibcode:2019Sci...365..699A. doi:10.1126/science.aav6416. PMID   31371562.
  43. Villette, V; Chavarha, M; Dimov, IK; Bradley, J; Pradhan, L; Mathieu, B; Evans, SW; Chamberland, S; Shi, D; Yang, R; Kim, BB; Ayon, A; Jalil, A; St-Pierre, F; Schnitzer, MJ; Bi, G; Toth, K; Ding, J; Dieudonné, S; Lin, MZ (12 December 2019). "Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice". Cell. 179 (7): 1590–1608.e23. doi:10.1016/j.cell.2019.11.004. PMC   6941988 . PMID   31835034.
  44. Liu, Zhuohe; Lu, Xiaoyu; Villette, Vincent; Gou, Yueyang; Colbert, Kevin L.; Lai, Shujuan; Guan, Sihui; Land, Michelle A.; Lee, Jihwan; Assefa, Tensae; Zollinger, Daniel R.; Korympidou, Maria M.; Vlasits, Anna L.; Pang, Michelle M.; Su, Sharon (2022-08-18). "Sustained deep-tissue voltage recording using a fast indicator evolved for two-photon microscopy". Cell. 185 (18): 3408–3425.e29. doi:10.1016/j.cell.2022.07.013. ISSN   0092-8674. PMC   9563101 . PMID   35985322.
  45. Yang HH, St-Pierre F (2016). "Genetically Encoded Voltage Indicators: Opportunities and Challenges". J. Neurosci. 36 (39): 9977–9989. doi:10.1523/JNEUROSCI.1095-16.2016. PMC   5039263 . PMID   27683896.
  46. Kaschula R, Salecker I (2016). "Neuronal Computations Made Visible with Subcellular Resolution". Cell . 166 (1): 18–20. doi: 10.1016/j.cell.2016.06.022 . PMID   27368098.
  47. Cao G, Platisa J, Pieribone VA, et al. (2013). "Genetically targeted optical electrophysiology in intact neural circuits". Cell . 154 (4): 904–913. doi:10.1016/j.cell.2013.07.027. PMC   3874294 . PMID   23932121.
  48. Knöpfel T, Gallero-Salas Y, Song C (2015). "Genetically encoded voltage indicators for large scale cortical imaging come of age". Curr. Opin. Chem. Biol. 27: 75–83. doi:10.1016/j.cbpa.2015.06.006. PMID   26115448.
  49. Kaestner L, Tian Q, Kaiser E, et al. (2015). "Genetically Encoded Voltage Indicators in Circulation Research". Int. J. Mol. Sci. 16 (9): 21626–21642. doi: 10.3390/ijms160921626 . PMC   4613271 . PMID   26370981.
  50. Zhang, Joe Z.; Termglinchan, Vittavat; Shao, Ning-Yi; Itzhaki, Ilanit; Liu, Chun; Ma, Ning; Tian, Lei; Wang, Vicky Y.; Chang, Alex C. Y.; Guo, Hongchao; Kitani, Tomoya (2019-05-02). "A Human iPSC Double-Reporter System Enables Purification of Cardiac Lineage Subpopulations with Distinct Function and Drug Response Profiles". Cell Stem Cell. 24 (5): 802–811.e5. doi: 10.1016/j.stem.2019.02.015 . ISSN   1934-5909. PMC   6499654 . PMID   30880024.
  51. Kulkarni, Rishikesh U; Miller, Evan W (2017). "Voltage imaging: pitfalls and potential". Biochemistry. 56 (39). ACS Publications: 5171–5177. doi:10.1021/acs.biochem.7b00490. PMC   5715730 . PMID   28745864.