Voltage sensitive phosphatases or voltage sensor-containing phosphatases, commonly abbreviated VSPs, are a protein family found in many species, including humans, mice, zebrafish, frogs, and sea squirt.
Identifiers | |
---|---|
Symbol | VSP |
OPM superfamily | 447 |
OPM protein | 4g80 |
The first voltage sensitive phosphatase was discovered as a result of a genome-wide search in the sea squirt Ciona intestinalis . [1] The search was designed to identify proteins which contained a sequence of amino acids called a voltage sensor, because this sequence of amino acids confers voltage sensitivity to voltage-gated ion channels. [2] [3] [4] Although the initial genomic analysis was primarily concerned with the evolution of voltage-gated ion channels, one of the results of the work was the discovery of the VSP protein in sea squirt, termed Ci-VSP. [5]
The homologues to Ci-VSP in mammals are called Transmembrane phosphatases with tensin homology, or TPTEs . TPTE (now also called hVSP2 [6] ) and the closely related TPIP (also called TPTE2 or hVSP1 [6] ) were identified before the discovery of Ci-VSP, [7] [8] [9] [10] however no voltage-dependent activity was described in the initial reports of these proteins. Subsequently, computational methods were used to suggest that these proteins may be voltage sensitive, [11] however Ci-VSP is still widely regarded as the first-identified VSP. [12] [13]
VSPs are found across animals and choanoflagellates, though lost from nematodes and insects. [14] Humans contain two members, TPTE and TPTE2, which result from a primate-specific duplication . Most reports indicate that VSPs are found primarily in reproductive tissue, especially the testis. Other VSPs discovered include: Dr-VSP (zebrafish Danio rerio, 2008, [15] 2022 [16] ), Gg-VSP (chicken Gallus gallus domesticus, 2014), [17] Xl-VSP1, Xl-VSP2, and Xt-VSP (frogs: X. laevis and X. tropicalis , 2011), [18] TPTE (mouse), [19] [20] etc.
Following the discovery of Ci-VSP, the nomenclature used for naming these proteins consists of two letters corresponding to the initials of the species name, followed by the acronym VSP. For the human VSPs, it has been suggested the adoption of the names Hs-VSP1 and Hs-VSP2 when referring to TPIP and TPTE, respectively. [13] [21]
VSPs are made up of two protein domains: a voltage sensor domain, and a phosphatase domain coupled to a lipid-binding C2 domain.
The voltage sensor domain contains four transmembrane helices, named S1 through S4. The S4 transmembrane helix contains a number of positively charged arginine and lysine amino acid residues. Voltage sensitivity in VSPs is generated primarily by these charges in the S4, in much the same way that voltage-gated ion channels are gated by voltage. When positive charge builds up on one side of a membrane containing such voltage sensors, it generates an electric force pressing the S4 in the opposite direction. Changes in membrane potential therefore move the S4 back and forth through the membrane, allowing the voltage sensor to act like a switch. Activation of the voltage sensor occurs at depolarized potentials, i.e.: when the membrane collects more positive charge on the inner leaflet. Conversely, deactivation of the voltage sensor takes place at hyperpolarized potentials, when the membrane collects more negative charge on the inner leaflet. Activation of the voltage sensor increases the activity of the phosphatase domain, while deactivation of the voltage sensor decreases phosphatase activity.
The phosphatase domain in VSPs is highly homologous to the tumor suppressor PTEN, and acts to remove phosphate groups from phospholipids in the membrane containing the VSP. Phospholipids such as inositol phosphates are signaling molecules which exert different effects depending on the pattern in which they are phosphorylated and dephosphorylated. Therefore, the action of VSPs is to indirectly regulate processes dependent on phospholipids.
The main substrate that has been characterized so far for VSPs (including hVSP1 [6] but not hVSP2/TPTE, which shows no phosphatase activity) is phosphatidylinositol (4,5)-bisphosphate, which VSPs dephosphorylate at the 5' position. [22] [23] However, VSP activity has been reported against other phosphoinositides as well, including phosphatidylinositol (3,4,5)-trisphosphate, which is also dephosphorylated at the 5' position. [24] Activity against the 3-phosphate of PI(3,4)P2 has also been demonstrated; this activity seems to become apparent at high membrane potentials, at lower potentials the 5'-phosphatase activity is predominant. [25]
X-ray crystallography has been used to generate high-resolution images of the two domains of Ci-VSP, separate from one another. [26] [27] [28] By introducing small mutations in the protein, researchers have produced crystal structures of both the voltage sensing domain and the phosphatase domain from Ci-VSP in what are thought to be the "on" and "off" states. These structures have led to a model of VSP activation where movement of the voltage sensor affects a conformational change in a "gating loop," moving a glutamate residue in the gating loop away from the catalytic pocket of the phosphatase domain to increase phosphatase activity.
VSPs have been used as a tool to manipulate phospholipids in experimental settings. Because membrane potential can be controlled using patch clamp techniques, placing VSPs in a membrane allows for experimenters to rapidly dephosphorylate substrates of VSPs. VSPs' voltage sensors have also been used to engineer various types of genetically encoded voltage indicator (GEVI). These probes allow experimenters to visualize voltage in membranes using fluorescence. However, the normal role which VSPs play in the body is still not well understood.
Phosphatidylinositol or inositol phospholipid is a biomolecule. It was initially called "inosite" when it was discovered by Léon Maquenne and Johann Joseph von Scherer in the late 19th century. It was discovered in bacteria but later also found in eukaryotes, and was found to be a signaling molecule.
Voltage-gated ion channels are a class of transmembrane proteins that form ion channels that are activated by changes in a cell's electrical membrane potential near the channel. The membrane potential alters the conformation of the channel proteins, regulating their opening and closing. Cell membranes are generally impermeable to ions, thus they must diffuse through the membrane through transmembrane protein channels.
Phosphoinositide phospholipase C is a family of eukaryotic intracellular enzymes that play an important role in signal transduction processes. These enzymes belong to a larger superfamily of Phospholipase C. Other families of phospholipase C enzymes have been identified in bacteria and trypanosomes. Phospholipases C are phosphodiesterases.
Phosphatase and tensin homolog (PTEN) is a phosphatase in humans and is encoded by the PTEN gene. Mutations of this gene are a step in the development of many cancers, specifically glioblastoma, lung cancer, breast cancer, and prostate cancer. Genes corresponding to PTEN (orthologs) have been identified in most mammals for which complete genome data are available.
Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), abbreviated PIP3, is the product of the class I phosphoinositide 3-kinases' (PI 3-kinases) phosphorylation of phosphatidylinositol (4,5)-bisphosphate (PIP2). It is a phospholipid that resides on the plasma membrane.
Phosphoinositide 3-kinases (PI3Ks), also called phosphatidylinositol 3-kinases, are a family of enzymes involved in cellular functions such as cell growth, proliferation, differentiation, motility, survival and intracellular trafficking, which in turn are involved in cancer.
Phosphatidylinositol 4,5-bisphosphate or PtdIns(4,5)P2, also known simply as PIP2 or PI(4,5)P2, is a minor phospholipid component of cell membranes. PtdIns(4,5)P2 is enriched at the plasma membrane where it is a substrate for a number of important signaling proteins. PIP2 also forms lipid clusters that sort proteins.
Phosphatidylinositol 3-phosphate (PI3P) is a phospholipid found in cell membranes that helps to recruit a range of proteins, many of which are involved in protein trafficking, to the membranes. It is the product of both the class II and III phosphoinositide 3-kinases activity on phosphatidylinositol.
Phosphatidylinositol (3,4)-bisphosphate is a minor phospholipid component of cell membranes, yet an important second messenger. The generation of PtdIns(3,4)P2 at the plasma membrane activates a number of important cell signaling pathways.
Pleckstrin homology domain or (PHIP) is a protein domain of approximately 120 amino acids that occurs in a wide range of proteins involved in intracellular signaling or as constituents of the cytoskeleton.
Phosphatidylinositol 3,5-bisphosphate is one of the seven phosphoinositides found in eukaryotic cell membranes. In quiescent cells, the PtdIns(3,5)P2 levels, typically quantified by HPLC, are the lowest amongst the constitutively present phosphoinositides. They are approximately 3 to 5-fold lower as compared to PtdIns3P and PtdIns5P levels, and more than 100-fold lower than the abundant PtdIns4P and PtdIns(4,5)P2. PtdIns(3,5)P2 was first reported to occur in mouse fibroblasts and budding yeast S. cerevisiae in 1997. In S. cerevisiae PtdIns(3,5)P2 levels increase dramatically during hyperosmotic shock. The response to hyperosmotic challenge is not conserved in most tested mammalian cells except for differentiated 3T3L1 adipocytes.
Phospholipase D (EC 3.1.4.4, lipophosphodiesterase II, lecithinase D, choline phosphatase, PLD; systematic name phosphatidylcholine phosphatidohydrolase) is an anesthetic sensitive and mechanosensitive enzyme of the phospholipase superfamily that catalyses the following reaction
A C2 domain is a protein structural domain involved in targeting proteins to cell membranes. The typical version (PKC-C2) has a beta-sandwich composed of 8 β-strands that co-ordinates two or three calcium ions, which bind in a cavity formed by the first and final loops of the domain, on the membrane binding face. Many other C2 domain families don't have calcium binding activity.
Synaptojanin is a protein involved in vesicle uncoating in neurons. This is an important regulatory lipid phosphatase. It dephosphorylates the D-5 position phosphate from phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and Phosphatidylinositol (4,5)-bisphosphate(PIP2). It belongs to family of 5-phosphatases, which are structurally unrelated to D-3 inositol phosphatases like PTEN. Other members of the family of 5'phosphoinositide phosphatases include OCRL, SHIP1, SHIP2, INPP5J, INPP5E, INPP5B, INPP5A and SKIP.
The enzyme phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase (EC 3.1.3.67) catalyzes the chemical reaction
The Akt signaling pathway or PI3K-Akt signaling pathway is a signal transduction pathway that promotes survival and growth in response to extracellular signals. Key proteins involved are PI3K and Akt.
In the field of biochemistry, PDPK1 refers to the protein 3-phosphoinositide-dependent protein kinase-1, an enzyme which is encoded by the PDPK1 gene in humans. It is implicated in the development and progression of melanomas.
Phosphatidylinositol 5-phosphate (PtdIns5P) is a phosphoinositide, one of the phosphorylated derivatives of phosphatidylinositol (PtdIns), that are well-established membrane-anchored regulatory molecules. Phosphoinositides participate in signaling events that control cytoskeletal dynamics, intracellular membrane trafficking, cell proliferation and many other cellular functions. Generally, phosphoinositides transduce signals by recruiting specific phosphoinositide-binding proteins to intracellular membranes.
Polyphosphoinositide phosphatase also known as phosphatidylinositol 3,5-bisphosphate 5-phosphatase or SAC domain-containing protein 3 (Sac3) is an enzyme that in humans is encoded by the FIG4 gene. Fig4 is an abbreviation for Factor-Induced Gene.
Genetically encoded voltage indicator is a protein that can sense membrane potential in a cell and relate the change in voltage to a form of output, often fluorescent level. It is a promising optogenetic recording tool that enables exporting electrophysiological signals from cultured cells, live animals, and ultimately human brain. Examples of notable GEVIs include ArcLight, ASAP1, ASAP3, Archons, SomArchon, and Ace2N-mNeon.
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link)