Calcium imaging

Last updated

Calcium imaging is a microscopy technique to optically measure the calcium (Ca2+) status of an isolated cell, tissue or medium. Calcium imaging takes advantage of calcium indicators, fluorescent molecules that respond to the binding of Ca2+ ions by fluorescence properties. Two main classes of calcium indicators exist: chemical indicators and genetically encoded calcium indicators (GECI). [1] This technique has allowed studies of calcium signalling in a wide variety of cell types. In neurons, action potential generation is always accompanied by rapid influx of Ca2+ ions. Thus, calcium imaging can be used to monitor the electrical activity in hundreds of neurons in cell culture or in living animals, which has made it possible to observe the activity of neuronal circuits during ongoing behavior. [2]

Contents

Chemical indicators

Schematic of a typical setup for calcium fluorescence imaging of isolated cardiac myocytes Calcium fluorescence imaging schematic.png
Schematic of a typical setup for calcium fluorescence imaging of isolated cardiac myocytes

Chemical indicators are small molecules that can chelate calcium ions. All these molecules are based on an EGTA homologue called BAPTA, with high selectivity for calcium (Ca2+) ions versus magnesium (Mg2+) ions.

This group of indicators includes fura-2, indo-1, fluo-3, fluo-4, Calcium Green-1.

These dyes are often used with the chelator carboxyl groups masked as acetoxymethyl esters, in order to render the molecule lipophilic and to allow easy entrance into the cell. Once this form of the indicator is in the cell, cellular esterases will free the carboxyl groups and the indicator will be able to bind calcium. The free acid form of the dyes (i.e. without the acetoxymethyl ester modification) can also be directly injected into cells via a microelectrode or micropipette which removes uncertainties as to the cellular compartment holding the dye (the acetoxymethyl ester can also enter the endoplasmic reticulum and mitochondria). Binding of a Ca2+ ion to a fluorescent indicator molecule leads to either an increase in quantum yield of fluorescence or emission/excitation wavelength shift. Individual chemical Ca2+ fluorescent indicators are utilized for cytosolic calcium measurements in a wide variety of cellular preparations. The first real time (video rate) Ca2+ imaging was carried out in 1986 in cardiac cells using intensified video cameras. [3] Later development of the technique using laser scanning confocal microscopes revealed sub-cellular Ca2+ signals in the form of Ca2+ sparks and Ca2+ blips. Relative responses from a combination of chemical Ca2+ fluorescent indicators were also used to quantify calcium transients in intracellular organelles such as mitochondria. [4]

Calcium imaging, also referred to as calcium mapping, is also used to perform research on myocardial tissue. [5] Calcium mapping is a ubiquitous technique used on whole, isolated hearts such as mouse, rat, and rabbit species.

Genetically encoded calcium indicators

Genetically encoded calcium indicators (GECIs) are powerful tools useful for in vivo imaging of cellular, developmental, and physiological processes. [6] [7] [8] [9] GECIs do not need to be acutely loaded into cells; instead the genes encoding for these proteins can be introduced into individual cells or cell lines by various transfection methods. It is also possible to create transgenic animals expressing the indicator in all cells or selectively in certain cellular subtypes. GECIs are used to study neurons, [10] [11] T-cells, [12] cardiomyocytes, [13] and other cell types. Some GECIs report calcium by direct emission of photons (luminescence), but most rely on fluorescent proteins as reporters, including the green fluorescent protein GFP and its variants (eGFP, YFP, CFP).

Of the fluorescent reporters, calcium indicator systems can be classified into single fluorescent protein (FP) systems, and paired fluorescent protein systems. Camgaroos were one of the first developed variants involving a single protein system. Camgaroos take advantage of calmodulin (CaM), a calcium binding protein. In these structures, CaM is inserted in the middle of yellow fluorescent protein (YFP) at Y145. Previous mutagenesis studies revealed that mutations at this position conferred pH stability while maintaining fluorescent properties, making Y145 an insertion point of interest. Additionally, the N and C termini of YFP are linked by a peptide linker (GGTGGS). When CaM binds to Ca2+, the effective pKa is lowered, allowing for chromophore deprotonation. [14] This results in increased fluorescence upon calcium binding in an intensiometric fashion. Such detection is in contrast with ratiometric systems, in which there is a change in the absorbance/emission spectra as a result of Ca2+ binding. [15] A later developed single-FP system, dubbed G-CaMP, also invokes circularly permuted GFP. One of the termini is fused with CaM, and the other termini is fused with M13 (the calmodulin binding domain of myosin light kinase) [16] The protein is designed such that the termini are close in space, allowing for Ca2+ binding to cause conformational changes and chromophore modulation, allowing for increased fluorescence. G-CaMP and its refined variants have nanomolar binding affinities. [17] A final single protein variant is the CatchER, which is generally considered to be a lower affinity indicator. Its calcium binding pocket is quite negative; binding of the cation helps to shield the large concentration of negative charge and allows for recovered fluorescence. [18]

In contrast to these systems are paired fluorescent protein systems, which include the prototypical Cameleons. Cameleons consist of two different fluorescent proteins, CaM, M13, and a glycylglycine linker. [15] In the absence of Ca2+, only the donor blue-shifted fluorescent protein will be fluorescent. However, a conformational change caused by calcium binding repositions the red-shifted fluorescent protein, allowing for FRET (Förster resonance energy transfer) to take place. Cameleon indicators produce a ratiometric signal (i.e. the measured FRET efficiency depends on the calcium concentration). Original variants of cameleons were originally more sensitive to Ca2+ and were acid quenched. [19] Such shortcomings were abrogated by Q69K and V68L mutations. Both of these residues were close to the buried anionic chromophore and these mutations probably hinder protonation, conferring greater pH resistance.

Of growing importance in calcium detection are near-IR (NIR) GECIs, which may open up avenues for multiplexing different indicator systems and allowing deeper tissue penetration. NIRs rely on biliverdin-binding fluorescent proteins, which are largely derived from bacterial phytochromes. NIR systems are similar to inverse pericams in that both experience a decrease in fluorescence upon Ca2+ binding. RCaMPs and RGECOs are functional at 700+ nm, but are quite dim. [20] A Cameleon analog involving NIR FRET has been successfully constructed as well. [21]

A special class of GECIs are designed to form a permanent fluorescent tag in active neurons. They are based on the photoswitchable protein Eos which turns from green to red through photocatalyzed (with violet light) backbone cleavage. [22] Combined with the CaM, violet light photoconverts only neurons that have elevated calcium levels. SynTagMA is a synapse-targeted version of CaMPARI2. [23]

While fluorescent systems are widely used, bioluminescent Ca2+ reporters may also hold potential because of their ability to abrogate autofluorescence, photobleaching [no excitation wavelength is needed], biological degradation and toxicity, in addition to higher signal-to-noise ratios. [24] Such systems may rely on aequorin and the luciferin coelenterazine. Ca2+ binding causes a conformational change that facilitates coelenterazine oxidation. The resultant photoproduct emits blue light as it returns to the ground state. Colocalization of aequorin with GFP facilitates BRET/CRET (Bioluminescence or Chemiluminescence Resonance Energy Transfer), [18] resulting in a 19 - 65 brightness increase. Such structures can be used to probe millimolar to nanomolar calcium concentrations. A similar system invokes obelin and its luciferin coelenteramide, which may possess faster calcium response time and Mg2+ insensitivity than its aqueorin counterpart. [25] Such systems can also leverage the self-assembly of luciferase components. In a system dubbed “nano-lantern,” the luciferase RLuc8 is split and placed on different ends of CaM. Calcium binding brings the RLuc8 components in close proximity, reforming luciferase, and allowing it to transfer to an acceptor fluorescent protein.

To minimize damage to the visualized cells, two-photon microscopy is often invoked to detect the fluorescence from the reporters. [26] The use of near-IR wavelengths and minimization of axial spread of the point function [27] allows for nanometer resolution and deep penetration into the tissue. The dynamic range is often determined from such measurements. For non-ratiometric indicators (typically single protein indicators), it is the ratio of the fluorescence intensities obtained under Ca2+ saturated and depleted conditions, respectively. However, for ratiometric indicators, the dynamic range is the ratio of the maximum FRET efficiency ratio (calcium saturated) to the minimum FRET efficiency ratio (calcium depleted). Yet another common quantity used to measure signals produced by calcium concentration fluxes is the signal-to-baseline ratio (SBR), which is simply the ratio of the change in fluorescence (F - F0) over the baseline fluorescence. This can be related to the SNR (signal to noise ratio) by multiplying the SBR by the square root of the number of counted photons. [18]

GECIYearSensingReportingPrecursor
Cameleons [28] 1997CalmodulinFRET pair: BFP or CFP, and GFP or YFP-
FIP-CBSM [29] 1997CalmodulinFRET pair: BFP and RFP-
Pericams [30] 2000CalmodulincpGFP-
GCaMP [17] [31] 2000CalmodulincpEGFP-
TN-L15 [32] 2004Modified chicken skeletal muscle troponin CFRET pair: YFP (Citrine) and CFP (Cerulean)-
TN-humTnC [32] 2004Human cardiac troponin CFRET pair: YFP (Citrine) and CFP (Cerulean)-
TN-XL [33] 2006Modified chicken skeletal muscle troponin CFRET pair: permuted YFP (Citrine) and CFP (Cerulean)TN-L15
TN-XXL [34] 2008Modified csTnC in TN-XLFRET pair: permuted YFP (Citrine) and CFP (Cerulean)TN-XL
Twitch's [35] 2014Troponin CFRET pair (various of two FPs)-
RCaMP1 [36] 2013CalmodulinmRuby (red FP)-
jRGECO1a [37] 2016CalmodulinmApple (red FP)R-GECO [38]

A special class of genetically encoded calcium indicators are designed to form a permanent fluorescent tag in active neurons. They are based on the photoswitchable protein mEos which turns from green to red when illuminated with violet light. Combined with the calcium sensor calmodulin, violet light photoconverts only neurons that have elevated calcium levels. SynTagMA is a synapse-targeted version of CaMPARI2.

GECIYearSensingReportingPrecursor
CaMPARI [23] 2015Calmodulin + violet lightmEos: green to red conversion-
CaMPARI2 [39] 2018Calmodulin + violet lightmEos: green to red conversionCaMPARI
SynTagMA [40] 2020Calmodulin + violet lightmEos: green to red conversionCaMPARI2
TubuTag [41] 2021Calmodulin + violet lightmEos: green to red conversionCaMPARI2

Usage

Regardless of the type of indicator used, the imaging procedure is generally very similar. Cells loaded with an indicator, or expressing it in the case of a GECI, [42] can be viewed using a fluorescence microscope and captured by a Scientific CMOS (sCMOS) [43] camera or CCD camera. Confocal and two-photon microscopes provide optical sectioning ability so that calcium signals can be resolved in microdomains such as dendritic spines or synaptic boutons, even in thick samples such as mammalian brains. Images are analyzed by measuring fluorescence intensity changes for a single wavelength or two wavelengths expressed as a ratio (ratiometric indicators). If necessary, the derived fluorescence intensities and ratios may be plotted against calibrated values for known Ca2+ levels to measure absolute Ca2+ concentrations. Light field microscopy methods [44] extend functional readout of neural activity capabilities in 3D volumes.

Methods such as fiber photometry, [45] [46] miniscopes [47] and two-photon microscopy [48] [49] offer calcium imaging in freely behaving and head-fixed animal models.

Related Research Articles

<span class="mw-page-title-main">Green fluorescent protein</span> Protein that exhibits bright green fluorescence when exposed to ultraviolet light

The green fluorescent protein (GFP) is a protein that exhibits green fluorescence when exposed to light in the blue to ultraviolet range. The label GFP traditionally refers to the protein first isolated from the jellyfish Aequorea victoria and is sometimes called avGFP. However, GFPs have been found in other organisms including corals, sea anemones, zoanithids, copepods and lancelets.

<span class="mw-page-title-main">Fura-2</span> Chemical compound

Fura-2, an aminopolycarboxylic acid, is a ratiometric fluorescent dye which binds to free intracellular calcium. It was the first widely used dye for calcium imaging, and remains very popular. Fura-2 is excited at 340 nm and 380 nm of light, and the ratio of the emissions at those wavelengths is directly related to the amount of intracellular calcium. Regardless of the presence of calcium, Fura-2 emits at 510 nm of light. The use of the ratio automatically cancels out confounding variables, such as variable dye concentration and cell thickness, making Fura-2 one of the most appreciated tools to quantify calcium levels. The high photon yield of fura-2 allowed the first real time measurements of calcium inside living cells in 1986. More recently, genetically encoded calcium indicators based on spectral variants of the green fluorescent protein, such as Cameleons, have supplemented the use of Fura-2 and other small molecule dyes for calcium imaging, but Fura-2 remains faster.

Channelrhodopsins are a subfamily of retinylidene proteins (rhodopsins) that function as light-gated ion channels. They serve as sensory photoreceptors in unicellular green algae, controlling phototaxis: movement in response to light. Expressed in cells of other organisms, they enable light to control electrical excitability, intracellular acidity, calcium influx, and other cellular processes. Channelrhodopsin-1 (ChR1) and Channelrhodopsin-2 (ChR2) from the model organism Chlamydomonas reinhardtii are the first discovered channelrhodopsins. Variants that are sensitive to different colors of light or selective for specific ions have been cloned from other species of algae and protists.

<span class="mw-page-title-main">Two-photon excitation microscopy</span> Fluorescence imaging technique

Two-photon excitation microscopy is a fluorescence imaging technique that is particularly well-suited to image scattering living tissue of up to about one millimeter in thickness. Unlike traditional fluorescence microscopy, where the excitation wavelength is shorter than the emission wavelength, two-photon excitation requires simultaneous excitation by two photons with longer wavelength than the emitted light. The laser is focused onto a specific location in the tissue and scanned across the sample to sequentially produce the image. Due to the non-linearity of two-photon excitation, mainly fluorophores in the micrometer-sized focus of the laser beam are excited, which results in the spatial resolution of the image. This contrasts with confocal microscopy, where the spatial resolution is produced by the interaction of excitation focus and the confined detection with a pinhole.

<span class="mw-page-title-main">Aequorin</span> Calcium-activated photoprotein

Aequorin is a calcium-activated photoprotein isolated from the hydrozoan Aequorea victoria. Its bioluminescence was studied decades before the protein was isolated from the animal by Osamu Shimomura in 1962. In the animal, the protein occurs together with the green fluorescent protein to produce green light by resonant energy transfer, while aequorin by itself generates blue light.

Cameleon is an engineered protein based on variant of green fluorescent protein used to visualize calcium levels in living cells. It is a genetically encoded calcium sensor created by Roger Y. Tsien and coworkers. The name is a conflation of CaM (the common abbreviation of calmodulin) and chameleon to indicate the fact that the sensor protein undergoes a conformation change and radiates at an altered wavelength upon calcium binding to the calmodulin element of the Cameleon. Cameleon was the first genetically encoded calcium sensor that could be used for ratiometric measurements and the first to be used in a transgenic animal to record activity in neurons and muscle cells. Cameleon and other genetically encoded calcium indicators (GECIs) have found many applications in neuroscience and other fields of biology, including understanding the mechanisms of cell signaling by conducting time-resolved Ca2+ activity measurement experiments with endoplasmic reticulum (ER) enzymes. It was created by fusing BFP, calmodulin, calmodulin-binding peptide M13 and EGFP.

<span class="mw-page-title-main">GAL4/UAS system</span> Biochemical method

The GAL4-UAS system is a biochemical method used to study gene expression and function in organisms such as the fruit fly. It is based on the finding by Hitoshi Kakidani and Mark Ptashne, and Nicholas Webster and Pierre Chambon in 1988 that Gal4 binding to UAS sequences activates gene expression. The method was introduced into flies by Andrea Brand and Norbert Perrimon in 1993 and is considered a powerful technique for studying the expression of genes. The system has two parts: the Gal4 gene, encoding the yeast transcription activator protein Gal4, and the UAS, an enhancer to which GAL4 specifically binds to activate gene transcription.

<span class="mw-page-title-main">Brainbow</span> Neuroimaging technique to differentiate neurons

Brainbow is a process by which individual neurons in the brain can be distinguished from neighboring neurons using fluorescent proteins. By randomly expressing different ratios of red, green, and blue derivatives of green fluorescent protein in individual neurons, it is possible to flag each neuron with a distinctive color. This process has been a major contribution to the field of neural connectomics.

Calcium concentration microdomains (CCMs) are sites in a cell's cytoplasm with a localised high calcium ion (Ca2+) concentration. They are found immediately around the intracellular opening of calcium channels; when a calcium channel opens, the Ca2+ concentration in the adjacent CCM increases up to several hundred micromolar (μM). These microdomains take part in calcium signaling, which has a diverse range of potential outcomes.

<span class="mw-page-title-main">Visinin-like protein 1</span> Protein-coding gene in the species Homo sapiens

Visinin-like protein 1 is a protein that in humans is encoded by the VSNL1 gene.

<span class="mw-page-title-main">Axon terminal</span> Nerve fiber part

Axon terminals are distal terminations of the branches of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell that conducts electrical impulses called action potentials away from the neuron's cell body in order to transmit those impulses to other neurons, muscle cells or glands. In the central nervous system, most presynaptic terminals are actually formed along the axons, not at their ends.

EosFP is a photoactivatable green to red fluorescent protein. Its green fluorescence (516 nm) switches to red (581 nm) upon UV irradiation of ~390 nm due to a photo-induced modification resulting from a break in the peptide backbone near the chromophore. Eos was first discovered as a tetrameric protein in the stony coral Lobophyllia hemprichii. Like other fluorescent proteins, Eos allows for applications such as the tracking of fusion proteins, multicolour labelling and tracking of cell movement. Several variants of Eos have been engineered for use in specific study systems including mEos2, mEos4 and CaMPARI.

<span class="mw-page-title-main">CACNA1B</span> Protein-coding gene in the species Homo sapiens

The voltage-dependent N-type calcium channel subunit alpha-1B is a protein that in humans is encoded by the CACNA1B gene. The α1B protein, together with β and α2δ subunits forms N-type calcium channel. It is a R-type calcium channel.

Fluorescent chloride sensors are used for chemical analysis. The discoveries of chloride (Cl) participations in physiological processes stimulates the measurements of intracellular Cl in live cells and the development of fluorescent tools referred below.

<span class="mw-page-title-main">GCaMP</span> Genetically encoded calcium indicator

GCaMP is a genetically encoded calcium indicator (GECI) initially developed in 2001 by Junichi Nakai. It is a synthetic fusion of green fluorescent protein (GFP), calmodulin (CaM), and M13, a peptide sequence from myosin light-chain kinase. When bound to Ca2+, GCaMP fluoresces green with a peak excitation wavelength of 480 nm and a peak emission wavelength of 510 nm. It is used in biological research to measure intracellular Ca2+ levels both in vitro and in vivo using virally transfected or transgenic cell and animal lines. The genetic sequence encoding GCaMP can be inserted under the control of promoters exclusive to certain cell types, allowing for cell-type specific expression of GCaMP. Since Ca2+ is a second messenger that contributes to many cellular mechanisms and signaling pathways, GCaMP allows researchers to quantify the activity of Ca2+-based mechanisms and study the role of Ca2+ ions in biological processes of interest.

Genetically encoded voltage indicator is a protein that can sense membrane potential in a cell and relate the change in voltage to a form of output, often fluorescent level. It is a promising optogenetic recording tool that enables exporting electrophysiological signals from cultured cells, live animals, and ultimately human brain. Examples of notable GEVIs include ArcLight, ASAP1, ASAP3, Archons, SomArchon, and Ace2N-mNeon.

A genetically engineered fluorescent protein that changes its fluorescence when bound to the neurotransmitter glutamate. Glutamate-sensitive fluorescent reporters are used to monitor the activity of presynaptic terminals by fluorescence microscopy. GluSnFRs are a class of optogenetic sensors used in neuroscience research. In brain tissue, two-photon microscopy is typically used to monitor GluSnFR fluorescence.

<span class="mw-page-title-main">William Schafer</span> American geneticist

William Ronald Schafer is a neuroscientist and geneticist who has made important contributions to understanding the molecular and neural basis of behaviour. His work, principally in the nematode C. elegans, has used an interdisciplinary approach to investigate how small groups of neurons generate behavior, and he has pioneered methodological approaches, including optogenetic neuroimaging and automated behavioural phenotyping, that have been widely influential in the broader neuroscience field. He has made significant discoveries on the functional properties of ionotropic receptors in sensory transduction and on the roles of gap junctions and extrasynaptic modulation in neuronal microcircuits. More recently, he has applied theoretical ideas from network science and control theory to investigate the structure and function of simple neuronal connectomes, with the goal of understanding conserved computational principles in larger brains. He is an EMBO member, Welcome Investigator and Fellow of the Academy of Medical Sciences.

Fiber photometry is a calcium imaging technique that captures 'bulk' or population-level calcium (Ca2+) activity from specific cell-types within a brain region or functional network in order to study neural circuits Population-level calcium activity can be correlated with behavioral tasks, such as spatial learning, memory recall and goal-directed behaviors. The technique involves the surgical implantation of fiber optics into the brains of living animals. The benefits to researchers are that optical fibers are simpler to implant, less invasive and less expensive than other calcium methods, and there is less weight and stress on the animal, as compared to miniscopes. It also allows for imaging of multiple interacting brain regions and integration with other neuroscience techniques. The limitations of fiber photometry are low cellular and spatial resolution, and the fact that animals must be securely tethered to a rigid fiber bundle, which may impact the naturalistic behavior of smaller mammals such as mice.

Optogenetics began with methods to alter neuronal activity with light, using e.g. channelrhodopsins. In a broader sense, optogenetic approaches also include the use of genetically encoded biosensors to monitor the activity of neurons or other cell types by measuring fluorescence or bioluminescence. Genetically encoded calcium indicators (GECIs) are used frequently to monitor neuronal activity, but other cellular parameters such as membrane voltage or second messenger activity can also be recorded optically. The use of optogenetic sensors is not restricted to neuroscience, but plays increasingly important roles in immunology, cardiology and cancer research.

References

  1. de Melo Reis, Ricardo Augusto; Freitas, Hércules Rezende; de Mello, Fernando Garcia (2020). "Cell Calcium Imaging as a Reliable Method to Study Neuron–Glial Circuits". Frontiers in Neuroscience. 14: 975. doi: 10.3389/fnins.2020.569361 . ISSN   1662-453X. PMC   7566175 . PMID   33122991.
  2. Siciliano, Cody A.; Tye, Kay M. (February 2019). "Leveraging calcium imaging to illuminate circuit dysfunction in addiction". Alcohol (Fayetteville, N.Y.). 74: 47–63. doi:10.1016/j.alcohol.2018.05.013. ISSN   1873-6823. PMC   7575247 . PMID   30470589.
  3. Cannell MB, Berlin JR, Lederer WJ (1987-01-01). "Intracellular calcium in cardiac myocytes: calcium transients measured using fluorescence imaging". Society of General Physiologists Series. 42: 201–214. PMID   3505361.
  4. Ivannikov MV, Macleod GT (June 2013). "Mitochondrial free Ca²⁺ levels and their effects on energy metabolism in Drosophila motor nerve terminals". Biophysical Journal. 104 (11): 2353–2361. Bibcode:2013BpJ...104.2353I. doi:10.1016/j.bpj.2013.03.064. PMC   3672877 . PMID   23746507.
  5. Jaimes R, Walton RD, Pasdois P, Bernus O, Efimov IR, Kay MW (June 2016). "A technical review of optical mapping of intracellular calcium within myocardial tissue". American Journal of Physiology. Heart and Circulatory Physiology. 310 (11): H1388–H1401. doi:10.1152/ajpheart.00665.2015. PMC   4935510 . PMID   27016580.
  6. Hendel T, Mank M, Schnell B, Griesbeck O, Borst A, Reiff DF (July 2008). "Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro". The Journal of Neuroscience. 28 (29): 7399–7411. doi:10.1523/JNEUROSCI.1038-08.2008. PMC   6670390 . PMID   18632944.
  7. Gordon S, Dickinson MH (March 2006). "Role of calcium in the regulation of mechanical power in insect flight". Proceedings of the National Academy of Sciences of the United States of America. 103 (11): 4311–4315. Bibcode:2006PNAS..103.4311G. doi: 10.1073/pnas.0510109103 . PMC   1449689 . PMID   16537527.
  8. Kerr R, Lev-Ram V, Baird G, Vincent P, Tsien RY, Schafer WR (June 2000). "Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans". Neuron. 26 (3): 583–59. doi: 10.1016/S0896-6273(00)81196-4 . PMID   10896155. S2CID   311998.
  9. Kim J, Lee S, Jung K, Oh WC, Kim N, Son S, et al. (January 2019). "Intensiometric biosensors visualize the activity of multiple small GTPases in vivo". Nature Communications. 10 (1): 211. Bibcode:2019NatCo..10..211K. doi:10.1038/s41467-018-08217-3. PMC   6331645 . PMID   30643148.
  10. Afshar Saber W, Gasparoli FM, Dirks MG, Gunn-Moore FJ, Antkowiak M (2018). "All-Optical Assay to Study Biological Neural Networks". Frontiers in Neuroscience. 12: 451. doi: 10.3389/fnins.2018.00451 . PMC   6041400 . PMID   30026684.
  11. Kovalchuk Y, Homma R, Liang Y, Maslyukov A, Hermes M, Thestrup T, et al. (February 2015). "In vivo odourant response properties of migrating adult-born neurons in the mouse olfactory bulb". Nature Communications. 6: 6349. Bibcode:2015NatCo...6.6349K. doi: 10.1038/ncomms7349 . PMID   25695931.
  12. Mues M, Bartholomäus I, Thestrup T, Griesbeck O, Wekerle H, Kawakami N, Krishnamoorthy G (June 2013). "Real-time in vivo analysis of T cell activation in the central nervous system using a genetically encoded calcium indicator". Nature Medicine. 19 (6): 778–783. doi:10.1038/nm.3180. PMID   23685843. S2CID   205391240.
  13. Shinnawi R, Huber I, Maizels L, Shaheen N, Gepstein A, Arbel G, et al. (October 2015). "Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters". Stem Cell Reports. 5 (4): 582–596. doi:10.1016/j.stemcr.2015.08.009. PMC   4624957 . PMID   26372632.
  14. Baird GS, Zacharias DA, Tsien RY (September 1999). "Circular permutation and receptor insertion within green fluorescent proteins". Proceedings of the National Academy of Sciences of the United States of America. 96 (20): 11241–11246. Bibcode:1999PNAS...9611241B. doi: 10.1073/pnas.96.20.11241 . PMC   18018 . PMID   10500161.
  15. 1 2 Park JG, Palmer AE (2014). "Quantitative Measurement of Ca2+ and Zn2+ in Mammalian Cells Using Genetically Encoded Fluorescent Biosensors". Fluorescent Protein-Based Biosensors. Methods in Molecular Biology. Vol. 1071. pp. 29–47. doi:10.1007/978-1-62703-622-1_3. ISBN   978-1-62703-621-4. PMC   4051312 . PMID   24052378.
  16. Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A, Palmer AE, et al. (February 2017). "The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins". Trends in Biochemical Sciences. 42 (2): 111–129. doi:10.1016/j.tibs.2016.09.010. PMC   5272834 . PMID   27814948.
  17. 1 2 Nakai J, Ohkura M, Imoto K (February 2001). "A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein". Nature Biotechnology. 19 (2): 137–141. doi:10.1038/84397. PMID   11175727. S2CID   30254550.
  18. 1 2 3 Pérez Koldenkova V, Nagai T (July 2013). "Genetically encoded Ca(2+) indicators: properties and evaluation". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1833 (7): 1787–1797. doi:10.1016/j.bbamcr.2013.01.011. PMID   23352808.
  19. Miyawaki A, Griesbeck O, Heim R, Tsien RY (March 1999). "Dynamic and quantitative Ca2+ measurements using improved cameleons". Proceedings of the National Academy of Sciences of the United States of America. 96 (5): 2135–2140. Bibcode:1999PNAS...96.2135M. doi: 10.1073/pnas.96.5.2135 . PMC   26749 . PMID   10051607.
  20. Qian Y, Piatkevich KD, Mc Larney B, Abdelfattah AS, Mehta S, Murdock MH, et al. (February 2019). "A genetically encoded near-infrared fluorescent calcium ion indicator". Nature Methods. 16 (2): 171–174. doi:10.1038/s41592-018-0294-6. PMC   6393164 . PMID   30664778.
  21. Shemetov AA, Monakhov MV, Zhang Q, Canton-Josh JE, Kumar M, Chen M, et al. (March 2021). "A near-infrared genetically encoded calcium indicator for in vivo imaging". Nature Biotechnology. 39 (3): 368–377. doi:10.1038/s41587-020-0710-1. PMC   7956128 . PMID   33106681.
  22. Nienhaus K, Nienhaus GU, Wiedenmann J, Nar H (June 2005). "Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP". Proceedings of the National Academy of Sciences of the United States of America. 102 (26): 9156–9159. Bibcode:2005PNAS..102.9156N. doi: 10.1073/pnas.0501874102 . PMC   1166600 . PMID   15964985.
  23. 1 2 Fosque BF, Sun Y, Dana H, Yang CT, Ohyama T, Tadross MR, et al. (February 2015). "Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators". Science. 347 (6223): 755–760. doi:10.1126/science.1260922. PMID   25678659. S2CID   206562601.
  24. Baubet V, Le Mouellic H, Campbell AK, Lucas-Meunier E, Fossier P, Brúlet P (June 2000). "Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level". Proceedings of the National Academy of Sciences of the United States of America. 97 (13): 7260–7265. Bibcode:2000PNAS...97.7260B. doi: 10.1073/pnas.97.13.7260 . PMC   16533 . PMID   10860991.
  25. Illarionov BA, Frank LA, Illarionova VA, Bondar VS, Vysotski ES, Blinks JR (2000). "Recombinant obelin: Cloning and expression of cDNA, purification, and characterization as a calcium indicator". Bioluminescence and Chemiluminescence Part C. Methods in Enzymology. Vol. 305. pp. 223–249. doi:10.1016/s0076-6879(00)05491-4. ISBN   9780121822064. PMID   10812604.
  26. Oh, J., Lee, C., & Kaang, B. K. (2019). Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors. The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology, 23(4), 237–249. https://doi.org/10.4196/kjpp.2019.23.4.237
  27. Kaminer I, Nemirovsky J, Segev M (October 2013). "Optimizing 3D multiphoton fluorescence microscopy". Optics Letters. 38 (19): 3945–3948. Bibcode:2013OptL...38.3945K. doi:10.1364/OL.38.003945. PMID   24081095.
  28. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (August 1997). "Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin". Nature. 388 (6645): 882–887. Bibcode:1997Natur.388..882M. doi: 10.1038/42264 . PMID   9278050.
  29. Romoser VA, Hinkle PM, Persechini A (May 1997). "Detection in living cells of Ca2+-dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence. A new class of fluorescent indicators". The Journal of Biological Chemistry. 272 (20): 13270–13274. doi: 10.1074/jbc.272.20.13270 . PMID   9148946.
  30. Nagai T, Sawano A, Park ES, Miyawaki A (March 2001). "Circularly permuted green fluorescent proteins engineered to sense Ca2+". Proceedings of the National Academy of Sciences of the United States of America. 98 (6): 3197–3202. Bibcode:2001PNAS...98.3197N. doi: 10.1073/pnas.051636098 . PMC   30630 . PMID   11248055.
  31. Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM, Hasseman JP, et al. (July 2019). "High-performance calcium sensors for imaging activity in neuronal populations and microcompartments". Nature Methods. 16 (7): 649–657. doi:10.1038/s41592-019-0435-6. PMID   31209382. S2CID   189927684.
  32. 1 2 Heim N, Griesbeck O (April 2004). "Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein". The Journal of Biological Chemistry. 279 (14): 14280–14286. doi: 10.1074/jbc.M312751200 . PMID   14742421.
  33. Mank M, Reiff DF, Heim N, Friedrich MW, Borst A, Griesbeck O (March 2006). "A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change". Biophysical Journal. 90 (5): 1790–1796. Bibcode:2006BpJ....90.1790M. doi:10.1529/biophysj.105.073536. PMC   1367327 . PMID   16339891.
  34. Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V, et al. (September 2008). "A genetically encoded calcium indicator for chronic in vivo two-photon imaging". Nature Methods. 5 (9): 805–811. doi:10.1038/nmeth.1243. PMID   19160515. S2CID   5501437.
  35. Thestrup T, Litzlbauer J, Bartholomäus I, Mues M, Russo L, Dana H, et al. (February 2014). "Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes". Nature Methods. 11 (2): 175–182. doi:10.1038/nmeth.2773. hdl: 11858/00-001M-0000-0017-C32A-B . PMID   24390440. S2CID   11620748.
  36. Akerboom J, Carreras Calderón N, Tian L, Wabnig S, Prigge M, Tolö J, et al. (2013). "Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics". Frontiers in Molecular Neuroscience. 6: 2. doi: 10.3389/fnmol.2013.00002 . PMC   3586699 . PMID   23459413.
  37. Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, et al. (March 2016). "Sensitive red protein calcium indicators for imaging neural activity". eLife. 5: e12727. doi: 10.7554/eLife.12727 . PMC   4846379 . PMID   27011354.
  38. Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, et al. (September 2011). "An expanded palette of genetically encoded Ca²⁺ indicators". Science. 333 (6051): 1888–1891. Bibcode:2011Sci...333.1888Z. doi:10.1126/science.1208592. PMC   3560286 . PMID   21903779.
  39. Moeyaert B, Holt G, Madangopal R, Perez-Alvarez A, Fearey BC, Trojanowski NF, et al. (October 2018). "Improved methods for marking active neuron populations". Nature Communications. 9 (1): 4440. Bibcode:2018NatCo...9.4440M. doi:10.1038/s41467-018-06935-2. PMC   6202339 . PMID   30361563.
  40. Perez-Alvarez A, Fearey BC, O'Toole RJ, Yang W, Arganda-Carreras I, Lamothe-Molina PJ, et al. (May 2020). "Freeze-frame imaging of synaptic activity using SynTagMA". Nature Communications. 11 (1): 2464. Bibcode:2020NatCo..11.2464P. doi:10.1038/s41467-020-16315-4. PMC   7235013 . PMID   32424147.
  41. Perez-Alvarez A, Huhn F, Dürst CD, Franzelin A, Lamothe-Molina PJ, Oertner TG (2021). "Freeze-Frame Imaging of Dendritic Calcium Signals With TubuTag". Frontiers in Molecular Neuroscience. 14: 635820. doi: 10.3389/fnmol.2021.635820 . PMC   7982875 . PMID   33762909.
  42. Akerboom, Jasper; Tian, Lin; Marvin, Jonathan S.; Looger, Loren L. (2012), Martin, Jean-René (ed.), "Engineering and Application of Genetically Encoded Calcium Indicators", Genetically Encoded Functional Indicators, Totowa, NJ: Humana Press, pp. 125–147, doi:10.1007/978-1-62703-014-4_8, ISBN   978-1-62703-014-4 , retrieved 2024-03-15
  43. Nguyen JP, Shipley FB, Linder AN, Plummer GS, Liu M, Setru SU, et al. (February 2016). "Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans". Proceedings of the National Academy of Sciences of the United States of America. 113 (8): E1074–E1081. arXiv: 1501.03463 . Bibcode:2016PNAS..113E1074N. doi: 10.1073/pnas.1507110112 . PMC   4776509 . PMID   26712014.
  44. Pégard NC, Liu HY, Antipa N, Gerlock M, Adesnik H, Waller L (May 2016). "Compressive light-field microscopy for 3D neural activity recording". Optica. 3 (5): 517–24. Bibcode:2016Optic...3..517P. doi: 10.1364/optica.3.000517 .
  45. Wang Y, DeMarco EM, Witzel LS, Keighron JD (February 2021). "A selected review of recent advances in the study of neuronal circuits using fiber photometry". Pharmacology, Biochemistry, and Behavior. 201: 173113. doi:10.1016/j.pbb.2021.173113. PMID   33444597. S2CID   231579597.
  46. Sych Y, Chernysheva M, Sumanovski LT, Helmchen F (June 2019). "High-density multi-fiber photometry for studying large-scale brain circuit dynamics" (PDF). Nature Methods. 16 (6): 553–560. doi:10.1038/s41592-019-0400-4. PMID   31086339. S2CID   152283372.
  47. Resendez SL, Jennings JH, Ung RL, Namboodiri VM, Zhou ZC, Otis JM, et al. (March 2016). "Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses". Nature Protocols. 11 (3): 566–597. doi:10.1038/nprot.2016.021. PMC   5239057 . PMID   26914316.
  48. Jung JC, Mehta AD, Aksay E, Stepnoski R, Schnitzer MJ (November 2004). "In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy". Journal of Neurophysiology. 92 (5): 3121–3133. doi:10.1152/jn.00234.2004. PMC   2826362 . PMID   15128753.
  49. Svoboda K, Yasuda R (June 2006). "Principles of two-photon excitation microscopy and its applications to neuroscience". Neuron. 50 (6): 823–839. doi: 10.1016/j.neuron.2006.05.019 . PMID   16772166. S2CID   7278880.

Further reading