Calcium sparks

Last updated

A calcium spark is the microscopic release of calcium (Ca2+) from a store known as the sarcoplasmic reticulum (SR), located within muscle cells. [1] This release occurs through an ion channel within the membrane of the SR, known as a ryanodine receptor (RyR), which opens upon activation. [2] This process is important as it helps to maintain Ca2+ concentration within the cell. It also initiates muscle contraction in skeletal and cardiac muscles and muscle relaxation in smooth muscles. Ca2+ sparks are important in physiology as they show how Ca2+ can be used at a subcellular level, to signal both local changes, known as local control, [3] as well as whole cell changes.

Contents

Activation

As mentioned above, Ca2+ sparks depend on the opening of ryanodine receptors, of which there are three types:

Opening of the channel allows Ca2+ to pass from the SR, into the cell. This increases the local Ca2+ concentration around the RyR, by a factor of 10. [4] Calcium sparks can either be evoked or spontaneous, as described below.

Figure 1: An evoked calcium spark, in a cardiac muscle cell. Ca2+ sparks.jpg
Figure 1: An evoked calcium spark, in a cardiac muscle cell.

Evoked

Electrical impulses, known as action potentials, travel along the cell membrane (sarcolemma) of muscle cells. [5] Located in the sarcolemma of smooth muscle cells are receptors, called dihydropyridine receptors (DHPR). In skeletal and cardiac muscle cells, however, these receptors are located within structures known as T-tubules, that are extensions of the plasma membrane penetrating deep into the cell (see figure 1). [6] [7] These DHPRs are located directly opposite to the ryanodine receptors, located on the sarcoplasmic reticulum [8] and activation, by the action potential causes the DHPRs to change shape. [9]

In cardiac and smooth muscle, activation of the DHPR results in it forming an ion channel. [10] This allows Ca2+ to pass into the cell, increasing the local Ca2+ concentration, around the RyR. When four Ca2+ molecules bind to the RyR, it opens, resulting in a larger release of Ca2+, from the SR . This process, of using Ca2+ to activate release of Ca2+ from the SR is known as calcium-induced calcium release. [11]

However, in skeletal muscle the DHPR touches the RyR. Therefore, the shape change of the DHPR activates the RyR directly, without the need for Ca2+ to flood into the cell first. This causes the RyR to open, allowing Ca2+ to be released from the SR. [12]

Spontaneous

Ca2+ sparks can also occur in cells at rest (i.e. cells that have not been stimulated by an action potential). This occurs roughly 100 times every second in each cell [13] and is a result of Ca2+ concentration being too high. An increase in Ca2+ within the SR is thought to bind to Ca2+ sensitive sites on the inside of the RyR causing the channel to open. As well as this, a protein called calsequestrin (found within the SR) detaches from the RyR, when calcium concentration is too high, again allowing the channel to open (see sarcoplasmic reticulum for more details). Similarly, a decrease in Ca2+ concentration within the SR has also proven to lower RyR sensitivity. This is thought to be due to the calsequestrin binding more strongly to the RyR, preventing it from opening and decreasing the likelihood of a spontaneous spark. [14]

Calcium after release

There are roughly 10,000 clusters of ryanodine receptors within a single cardiac cell, with each cluster containing around 100 ryanodine receptors. [13] During a single spontaneous spark, when Ca2+ is released from the SR, the Ca2+ diffuses throughout the cell. As the RyRs in the heart are activated by Ca2+, the movement of the Ca2+ released during a spontaneous spark, can activate other neighbouring RyRs within the same cluster. However, there usually isn't enough Ca2+ present in a single spark to reach a neighbouring cluster of receptors. [13] The calcium can, however, signal back to the DHPR causing it to close and preventing further influx of calcium. This is known as negative feedback. [15]

An increase in Ca2+ concentration within the cell or the production of a larger spark, can lead to a large enough calcium released that the neighbouring cluster can be activated by the first. This is known as spark-induced spark activation and can lead to a Ca2+ wave of calcium release spreading across the cell. [13]

During evoked Ca2+ sparks, all clusters of ryanodine receptors, throughout the cell are activated at almost exactly the same time. This produces an increase in Ca2+ concentration across the whole cell (not just locally) and is known as a whole cell Ca2+ transient. This Ca2+ then binds to a protein, called troponin, initiating contraction, through a group of proteins known as myofilaments. [16]

In smooth muscle cells, the Ca2+ released during a spark is used for muscle relaxation. This is because, the Ca2+ that enters the cell via the DHPR in response to the action potential, stimulates both muscle contraction and calcium release from the SR. The Ca2+ released during the spark, then activates two other ion channels on the membrane. One channel allows potassium ions to exit the cell, whereas the other allows chloride ions to leave the cell. The result of this movement of ions, is that the membrane voltage becomes more negative. This deactivates the DHPR (which was activated by the positive membrane potential produced by the action potential), causing it to close and stopping the flow of Ca2+into the cell, leading to relaxation. [17]

Termination

The mechanism by which SR Ca2+ release terminates is still not fully understood. Current main theories are outlined below:

Local depletion of SR Ca2+

This theory suggests that during a calcium spark, as calcium flows out of the SR, the concentration of Ca2+ within the SR becomes too low. However, this was not thought to be the case for spontaneous sparks as the total release during a Ca2+ spark is small compared to total SR Ca2+ content and researchers have produced sparks lasting longer than 200 milliseconds, therefore showing that there is still enough Ca2+ left within the SR after a 'normal' (200ms) spark. [18] However local depletion in the junctional SR may be much larger than previously thought (see [19] ). During the activation of a large number of ryanodine receptors however, as is the case during electrically evoked Ca2+ release , the entire SR is about 50% depleted of Ca2+ and this mechanism will play an important role in repriming of release.

Stochastic attrition

Despite the complicated name, this idea simply suggests that all ryanodine receptors in a cluster, and the associated dihydropyridine receptors happen to randomly close at the same time. This would not only prevent calcium release from the SR, but it would also stop the stimulus for calcium release (i.e. the flow of calcium through the DHPR). [20] However, due to the large numbers of RyRs and DHPRs in a single cell, this theory seems to be unrealistic, as there is a very small probability that they would all close together at exactly the same time. [18]

Inactivation/adaptation

This theory suggests that after activation of the RyR and the subsequent release of Ca2+, the channel closes briefly to recover. During this time, either the channel cannot be reopened, even if calcium is present (i.e. the RyR is inactivated) or the channel can be reopened, however more calcium is required to activate it than usual (i.e. the RyR is in an adaptation phase). This would mean that one-by-one the RyRs would close, thus ending the spark. [20]

Sticky cluster theory

This theory suggests that the above three theories all play a role in preventing calcium release. [21]

Discovery

Spontaneous Ca2+ sparks were discovered in cardiac muscle cells, of rats, in 1992 by Peace Cheng and Mark B. Cannell in Jon Lederer's laboratory at the University of Maryland, Baltimore, U.S.A.

Initially the idea was rejected by the scientific journal, Nature, who believed that the sparks were only present under laboratory conditions (i.e. they were artifacts), and so wouldn't occur naturally within the body. However they were quickly recognised as being of fundamental importance to muscle physiology, playing a huge role in excitation-contraction coupling.

The discovery was made possible due to improvements in confocal microscopes. This allowed for the detection of the release of Ca2+, which were highlighted using a substance known as fluo-3, which caused the Ca2+ to glow. Ca2+ “sparks” were so called because of the spontaneous, localised nature of the Ca2+ release as well as the fact that they are the initiation event of excitation-contraction coupling.

Detection and analysis

Because of the importance of Ca2+ sparks in explaining the gating properties of ryanodine receptors in situ (within the body), many studies have focused on improving their detectability [22] [23] in the hope that by accurately and reliably detecting all Ca2+ spark events, their true properties can finally help us to answer the unsolved mystery of spark termination.

See also

Related Research Articles

<span class="mw-page-title-main">Sarcoplasmic reticulum</span> Menbrane-bound structure in muscle cells for storing calcium

The sarcoplasmic reticulum (SR) is a membrane-bound structure found within muscle cells that is similar to the smooth endoplasmic reticulum in other cells. The main function of the SR is to store calcium ions (Ca2+). Calcium ion levels are kept relatively constant, with the concentration of calcium ions within a cell being 10,000 times smaller than the concentration of calcium ions outside the cell. This means that small increases in calcium ions within the cell are easily detected and can bring about important cellular changes (the calcium is said to be a second messenger). Calcium is used to make calcium carbonate (found in chalk) and calcium phosphate, two compounds that the body uses to make teeth and bones. This means that too much calcium within the cells can lead to hardening (calcification) of certain intracellular structures, including the mitochondria, leading to cell death. Therefore, it is vital that calcium ion levels are controlled tightly, and can be released into the cell when necessary and then removed from the cell.

<span class="mw-page-title-main">Cardiac action potential</span> Biological process in the heart

The cardiac action potential is a brief change in voltage across the cell membrane of heart cells. This is caused by the movement of charged atoms between the inside and outside of the cell, through proteins called ion channels. The cardiac action potential differs from action potentials found in other types of electrically excitable cells, such as nerves. Action potentials also vary within the heart; this is due to the presence of different ion channels in different cells.

<span class="mw-page-title-main">Muscle contraction</span> Activation of tension-generating sites in muscle

Muscle contraction is the activation of tension-generating sites within muscle cells. In physiology, muscle contraction does not necessarily mean muscle shortening because muscle tension can be produced without changes in muscle length, such as when holding something heavy in the same position. The termination of muscle contraction is followed by muscle relaxation, which is a return of the muscle fibers to their low tension-generating state.

Voltage-gated calcium channels (VGCCs), also known as voltage-dependent calcium channels (VDCCs), are a group of voltage-gated ion channels found in the membrane of excitable cells (e.g., muscle, glial cells, neurons, etc.) with a permeability to the calcium ion Ca2+. These channels are slightly permeable to sodium ions, so they are also called Ca2+–Na+ channels, but their permeability to calcium is about 1000-fold greater than to sodium under normal physiological conditions.

Ryanodine receptors form a class of intracellular calcium channels in various forms of excitable animal tissue like muscles and neurons. There are three major isoforms of the ryanodine receptor, which are found in different tissues and participate in different signaling pathways involving calcium release from intracellular organelles. The RYR2 ryanodine receptor isoform is the major cellular mediator of calcium-induced calcium release (CICR) in animal cells.

<span class="mw-page-title-main">Calcium signaling</span> Intracellular communication process

Calcium signaling is the use of calcium ions (Ca2+) to communicate and drive intracellular processes often as a step in signal transduction. Ca2+ is important for cellular signalling, for once it enters the cytosol of the cytoplasm it exerts allosteric regulatory effects on many enzymes and proteins. Ca2+ can act in signal transduction resulting from activation of ion channels or as a second messenger caused by indirect signal transduction pathways such as G protein-coupled receptors.

<span class="mw-page-title-main">T-tubule</span> Extensions in cell membrane of muscle fibres

T-tubules are extensions of the cell membrane that penetrate into the center of skeletal and cardiac muscle cells. With membranes that contain large concentrations of ion channels, transporters, and pumps, T-tubules permit rapid transmission of the action potential into the cell, and also play an important role in regulating cellular calcium concentration.

Calcium-induced calcium release (CICR) describes a biological process whereby calcium is able to activate calcium release from intracellular Ca2+ stores (e.g., endoplasmic reticulum or sarcoplasmic reticulum). Although CICR was first proposed for skeletal muscle in the 1970s, it is now known that CICR is unlikely to be the primary mechanism for activating SR calcium release. Instead, CICR is thought to be crucial for excitation-contraction coupling in cardiac muscle. It is now obvious that CICR is a widely occurring cellular signaling process present even in many non-muscle cells, such as in the insulin-secreting pancreatic beta cells, epithelium, and many other cells. Since CICR is a positive-feedback system, it has been of great interest to elucidate the mechanism(s) responsible for its termination.

<span class="mw-page-title-main">Catecholaminergic polymorphic ventricular tachycardia</span> Medical condition

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited genetic disorder that predisposes those affected to potentially life-threatening abnormal heart rhythms or arrhythmias. The arrhythmias seen in CPVT typically occur during exercise or at times of emotional stress, and classically take the form of bidirectional ventricular tachycardia or ventricular fibrillation. Those affected may be asymptomatic, but they may also experience blackouts or even sudden cardiac death.

<span class="mw-page-title-main">Triad (anatomy)</span> Structure of muscle tissue

In the histology of skeletal muscle, a triad is the structure formed by a T tubule with a sarcoplasmic reticulum (SR) known as the terminal cisterna on either side. Each skeletal muscle fiber has many thousands of triads, visible in muscle fibers that have been sectioned longitudinally. In mammals, triads are typically located at the A-I junction; that is, the junction between the A and I bands of the sarcomere, which is the smallest unit of a muscle fiber.

Within the muscle tissue of animals and humans, contraction and relaxation of the muscle cells (myocytes) is a highly regulated and rhythmic process. In cardiomyocytes, or cardiac muscle cells, muscular contraction takes place due to movement at a structure referred to as the diad, sometimes spelled "dyad." The dyad is the connection of transverse- tubules (t-tubules) and the junctional sarcoplasmic reticulum (jSR). Like skeletal muscle contractions, Calcium (Ca2+) ions are required for polarization and depolarization through a voltage-gated calcium channel. The rapid influx of calcium into the cell signals for the cells to contract. When the calcium intake travels through an entire muscle, it will trigger a united muscular contraction. This process is known as excitation-contraction coupling. This contraction pushes blood inside the heart and from the heart to other regions of the body.

<span class="mw-page-title-main">L-type calcium channel</span> Family of transport proteins

The L-type calcium channel is part of the high-voltage activated family of voltage-dependent calcium channel. "L" stands for long-lasting referring to the length of activation. This channel has four isoforms: Cav1.1, Cav1.2, Cav1.3, and Cav1.4.

<span class="mw-page-title-main">Ryanodine receptor 2</span> Transport protein and coding gene in humans

Ryanodine receptor 2 (RYR2) is one of a class of ryanodine receptors and a protein found primarily in cardiac muscle. In humans, it is encoded by the RYR2 gene. In the process of cardiac calcium-induced calcium release, RYR2 is the major mediator for sarcoplasmic release of stored calcium ions.

Ca<sub>v</sub>1.1 Mammalian protein found in Homo sapiens

Cav1.1 also known as the calcium channel, voltage-dependent, L type, alpha 1S subunit, (CACNA1S), is a protein which in humans is encoded by the CACNA1S gene. It is also known as CACNL1A3 and the dihydropyridine receptor.

<span class="mw-page-title-main">Ryanodine receptor 1</span> Protein and coding gene in humans

Ryanodine receptor 1 (RYR-1) also known as skeletal muscle calcium release channel or skeletal muscle-type ryanodine receptor is one of a class of ryanodine receptors and a protein found primarily in skeletal muscle. In humans, it is encoded by the RYR1 gene.

Imperatoxin I (IpTx) is a peptide toxin derived from the venom of the African scorpion Pandinus imperator.

JTV-519 (K201) is a 1,4-benzothiazepine derivative that interacts with many cellular targets. It has many structural similarities to diltiazem, a Ca2+ channel blocker used for treatment of hypertension, angina pectoris and some types of arrhythmias. JTV-519 acts in the sarcoplasmic reticulum (SR) of cardiac myocytes by binding to and stabilizing the ryanodine receptor (RyR2) in its closed state. It can be used in the treatment of cardiac arrhythmias, heart failure, catecholaminergic polymorphic ventricular tachycardia (CPVT) and store overload-induced Ca2+ release (SOICR). Currently, this drug has only been tested on animals and its side effects are still unknown. As research continues, some studies have also found a dose-dependent response; where there is no improvement seen in failing hearts at 0.3 μM and a decline in response at 1 μM.

CXL 1020 is an experimental drug that is being investigated as a treatment for acute decompensated heart failure. CXL 1020 functions as a nitroxyl donor; nitroxyl is the reduced, protonated version of nitric oxide. Nitroxyl is capable of enhancing left ventricular contractility without increasing heart rate by modifying normal Ca2+ cycling through the sarcoplasmic reticulum as well as increasing the sensitivity of cardiac myofilaments to Ca2+.

The ryanodine-inositol 1,4,5-triphosphate receptor Ca2+ channel (RIR-CaC) family includes Ryanodine receptors and Inositol trisphosphate receptors. Members of this family are large proteins, some exceeding 5000 amino acyl residues in length. This family belongs to the Voltage-gated ion channel (VIC) superfamily. Ry receptors occur primarily in muscle cell sarcoplasmic reticular (SR) membranes, and IP3 receptors occur primarily in brain cell endoplasmic reticular (ER) membranes where they effect release of Ca2+ into the cytoplasm upon activation (opening) of the channel. They are redox sensors, possibly providing a partial explanation for how they control cytoplasmic Ca2+. Ry receptors have been identified in heart mitochondria where they provide the main pathway for Ca2+ entry. Sun et al. (2011) have demonstrated oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor-Ca2+ release channel (RyR1;TC# 1.A.3.1.2) by NADPH oxidase 4.

Cardiac excitation-contraction coupling (CardiacEC coupling) describes the series of events, from the production of an electrical impulse (action potential) to the contraction of muscles in the heart. This process is of vital importance as it allows for the heart to beat in a controlled manner, without the need for conscious input. EC coupling results in the sequential contraction of the heart muscles that allows blood to be pumped, first to the lungs (pulmonary circulation) and then around the rest of the body (systemic circulation) at a rate between 60 and 100 beats every minute, when the body is at rest. This rate can be altered, however, by nerves that work to either increase heart rate (sympathetic nerves) or decrease it (parasympathetic nerves), as the body's oxygen demands change. Ultimately, muscle contraction revolves around a charged atom (ion), calcium (Ca2+), which is responsible for converting the electrical energy of the action potential into mechanical energy (contraction) of the muscle. This is achieved in a region of the muscle cell, called the transverse tubule during a process known as calcium induced calcium release.

References

  1. Cheng, H.; Lederer, W.J.; Cannell, M.B. (1993). "Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle". Science. 262 (5134): 740–744. Bibcode:1993Sci...262..740C. doi:10.1126/science.8235594. PMID   8235594.
  2. Lanner, J.T., Georgiou, D.K., Joshi, A.D. and Hamilton, S.L. (2010) 'Ryanodine receptors: Structure, expression, molecular details, and function in calcium release', 2(11)
  3. Cannell, M. and Kong, C. (2011) 'Local control in cardiac E-C coupling', Journal of Molecular and Cellular Cardiology, 52(2), pp. 298–303.
  4. Hoang-Trong, T.M., Ullah, A. and Jafri, S.M. (2015) 'Calcium sparks in the heart: Dynamics and regulation', 6
  5. Lodish, H., Berk, A., Zipursky, L.S., Matsudaira, P., Baltimore, D. and Darnell, J. (2000) The action potential and conduction of electric impulses. Available at: https://www.ncbi.nlm.nih.gov/books/NBK21668/ (Accessed: 11 February 2017)
  6. Brette, F.; Orchard, C. (2003). "T-tubule function in mammalian cardiac myocytes". Circulation Research. 92 (11): 1182–92. CiteSeerX   10.1.1.334.2517 . doi: 10.1161/01.res.0000074908.17214.fd . PMID   12805236.
  7. Cheng, Heping; Lederer, W. J. (2008-10-01). "Calcium Sparks". Physiological Reviews. 88 (4): 1491–1545. doi:10.1152/physrev.00030.2007. ISSN   0031-9333. PMID   18923188.
  8. Scriven, D. R. L.; Dan, P.; Moore, E. D. W. (2000). "Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes". Biophys. J. 79 (5): 2682–2691. Bibcode:2000BpJ....79.2682S. doi:10.1016/s0006-3495(00)76506-4. PMC   1301148 . PMID   11053140.
  9. Araya, R.; Liberona, J.; Cárdenas, J.; Riveros, N.; Estrada, M.; Powell, J.; Carrasco, M.; Jaimovich, E. (2003). "Dihydropyridine receptors as voltage sensors for a depolarization-evoked, IP3R-mediated, slow calcium signal in skeletal muscle cells". The Journal of General Physiology. 121 (1): 3–16. doi:10.1085/jgp.20028671. PMC   2217318 . PMID   12508050.
  10. Kotlikoff, M (2003). "Calcium-induced calcium release in smooth muscle: The case for loose coupling". Progress in Biophysics and Molecular Biology. 83 (3): 171–91. doi:10.1016/s0079-6107(03)00056-7. PMID   12887979.
  11. Fabiato, A (1983). "Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum". Am. J. Physiol. 245 (1): C1–C14. doi:10.1152/ajpcell.1983.245.1.c1. PMID   6346892.
  12. Meissner, G.; Lu, X. (1995). "Dihydropyridine receptor-ryanodine receptor interactions in skeletal muscle excitation-contraction coupling". Bioscience Reports. 15 (5): 399–408. doi:10.1007/bf01788371. PMID   8825041. S2CID   32810845.
  13. 1 2 3 4 Cheng, H.; Lederer, W. (2008). "Calcium sparks". Physiological Reviews. 88 (4): 1491–545. doi:10.1152/physrev.00030.2007. PMID   18923188.
  14. Bassani, J. W.; Yuan, W.; Bers, D. M. (1995-05-01). "Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes". American Journal of Physiology. Cell Physiology. 268 (5): C1313–C1319. doi:10.1152/ajpcell.1995.268.5.c1313. ISSN   0363-6143. PMID   7762626.
  15. Sham, J. S. K.; et al. (1998). "Termination of Ca2+ release by a local inactivation of ryanodine receptors in cardiac myocytes". Proc. Natl. Acad. Sci. USA. 95 (25): 15096–15101. Bibcode:1998PNAS...9515096S. doi: 10.1073/pnas.95.25.15096 . PMC   24581 . PMID   9844021.
  16. Herzberg, O.; Moult, J.; James, M. (1986). "Calcium Binding to Skeletal Muscle Troponin C and the Regulation of Muscle Contraction". In David Evered; Julie Whelan (eds.). Ciba Foundation Symposium 122 ‐ Calcium and the Cell. Ciba Foundation Symposium of 1985. Novartis Foundation Symposia. Vol. 122. pp. 120–44. doi:10.1002/9780470513347.ch8. ISBN   9780470513347. PMID   3792134.
  17. Webb, R (2003). "Smooth muscle contraction and relaxation". Advances in Physiology Education. 27 (4): 201–6. doi:10.1152/advances.2003.27.4.201. PMID   14627618.
  18. 1 2 Bers, D.M. (2002). "Cardiac excitation-contraction coupling". Nature. 415 (6868): 198–205. Bibcode:2002Natur.415..198B. doi:10.1038/415198a. PMID   11805843. S2CID   4337201.
  19. Kong CHT, Laver DR, Cannell MB (2013). "Extraction of Sub-microscopic Ca Fluxes from Blurred and Noisy Fluorescent Indicator Images with a Detailed Model Fitting Approach". PLOS Comput Biol. 9 (2): e1002931–7. Bibcode:2013PLSCB...9E2931K. doi: 10.1371/journal.pcbi.1002931 . PMC   3585382 . PMID   23468614.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. 1 2 Sham, J. S. K.; et al. (1998). "Termination of Ca2+ release by a local inactivation of ryanodine receptors in cardiac myocytes". Proc. Natl. Acad. Sci. USA. 95 (25): 15096–15101. Bibcode:1998PNAS...9515096S. doi: 10.1073/pnas.95.25.15096 . PMC   24581 . PMID   9844021.
  21. Sobie, E.A., Dilly, K.W., Cruz, J. dos S., Lederer, J.W. and Jafri, S.M. (2002) 'Termination of cardiac ca(2+) sparks: An investigative mathematical model of calcium-induced calcium release', 83(1)
  22. Cheng H, Song LS, Shirokova N, et al. (February 1999). "Amplitude distribution of Ca2+ sparks in confocal images: theory and studies with an automatic detection method". Biophysical Journal. 76 (2): 606–17. doi:10.1016/S0006-3495(99)77229-2. PMC   1300067 . PMID   9929467.
  23. Sebille S, Cantereau A, Vandebrouck C, et al. (January 2005). "Ca2+ sparks in muscle cells: interactive procedures for automatic detection and measurements on line-scan confocal images series". Computer Methods and Programs in Biomedicine. 77 (1): 57–70. doi:10.1016/j.cmpb.2004.06.004. PMID   15639710.

Software