Congenital generalized lipodystrophy | |
---|---|
Other names | Berardinelli–Seip syndrome |
![]() | |
An MRI image illustrating the lack of subcutaneous fat of a patient with the disease (G) compared to a control patient (A) | |
Specialty | Endocrinology ![]() |
Symptoms | Mild specific body features, absence of subcutaneous fat, muscle hypertrophy, insulin resistance, gigantism/acromegaly, large appetite [1] |
Complications | Heart disease, kidney failure, cirrhosis, infertility(women), |
Usual onset | After birth |
Types | CGL type 1, CGL type 2, CGL type 3, CGL type 4 |
Congenital generalized lipodystrophy (also known as Berardinelli–Seip lipodystrophy) is an extremely rare autosomal recessive condition, characterized by an extreme scarcity of fat in the subcutaneous tissues. [2] It is a type of lipodystrophy disorder where the magnitude of fat loss determines the severity of metabolic complications. [3] Only 250 cases of the condition have been reported, and it is estimated that it occurs in 1 in 10 million people worldwide. [4]
Congenital generalized lipodystrophy (CGL) is a rare autosomal recessive disorder which manifests with insulin resistance, absence of subcutaneous fat and muscular hypertrophy. [5] Homozygous or compound heterozygous mutations in four genes are associated with the four subtypes of CGL. [3] The condition appears in early childhood with accelerated linear growth, quick aging of bones, and a large appetite. As the child grows up, acanthosis nigricans (hyperpigmentation and thickening of skin) will begin to present itself throughout the body – mainly in the neck, trunk, and groin. [4] The disorder also has characteristic features like hepatomegaly or an enlarged liver which arises from fatty liver and may lead to cirrhosis, muscle hypertrophy, lack of adipose tissue, splenomegaly, hirsutism (excessive hairiness) and hypertriglyceridemia. [6] Fatty liver and muscle hypertrophy arise from the fact that lipids are instead stored in these areas; whereas in a healthy individual, lipids are distributed more uniformly throughout the body subcutaneously. The absence of adipose tissue where they normally occur causes the body to store fat in the remaining areas. [7] Common cardiovascular problems related to this syndrome are cardiac hypertrophy and arterial hypertension (high blood pressure). [8] This disorder can also cause metabolic syndrome. Most with the disorder also have a prominent umbilicus or umbilical hernia. Commonly, patients will also have acromegaly with enlargement of the hands, feet, and jaw. After puberty, additional symptoms can develop. In women, clitoromegaly and polycystic ovary syndrome can develop. This impairs fertility for women, and only a few documented cases of successful pregnancies in women with CGL exist. However, the fertility of men with the disorder is unaffected. [4]
There are differences in how type 1 vs type 2 patients are affected by the disease. In type 1 patients, they still have mechanical adipose tissue, but type 2 patients do not have any adipose tissue, including mechanical. [9] In type 2 patients, there is a greater likelihood of psychomotor retardation and intellectual impairment. [10]
OMIM | Type | Gene Locus |
---|---|---|
608594 | CGL1 | AGPAT2 at 9q34.3 |
269700 | CGL2 | BSCL2 at 11q13 |
612526 | CGL3 | CAV1 at 7q31.1 |
613327 | CGL4 | PTRF at 17q21 |
In individuals with Type 1 CGL, the disorder is caused by a mutation at the AGPAT2 gene encoding 1-acylglycerol-3-phosphate O-acyltransferase 2 and located at 9q34.3. This enzyme catalyzes the acylation of lysophosphatidic acid to form phosphatidic acid, which is important in the biosynthesis of fats. This enzyme is highly expressed in adipose tissue, so it can be concluded that when the enzyme is defective in CGL, lipids cannot be stored in the adipose tissue. [11]
In those who have Type 2 CGL, a mutation in the BSCL2 gene encoding the seipin protein and located at 11q13. This gene encodes a protein, Seipin, whose function is unknown. Expression of mRNA for the seipin protein is high in the brain, yet low in adipose tissues. Additionally, patients which have mutations in this protein have a higher incidence of mental retardation and lack mechanically active adipose tissue, which is present in those with AGPAT2 mutations. [4]
Type 3 CGL involves a mutation in the CAV1 gene. This gene codes for the caveolin protein, which is a scaffolding membrane protein. This protein plays a role in lipid regulation. High levels of Cav1 are normally expressed in adipocytes. Thus, when the CAV1 gene mutates the adipocytes do not have Cav1 and are unable to properly regulate lipid levels. [12]
A mutation in the PTRF gene causes Type 4 CGL. This gene codes for a protein called polymerase I and transcript release factor. Some of the roles the PTRF product has are to stabilize and aid in formation of caveolae. Thus, the mechanism is similar to Type 3, in that the caveolae are unable to properly form and carry out their role in lipid regulation in both. Types 3 and 4 are two different mutations but they share a common defective pathway. [13]
Medical diagnosis of CGL can be made after observing the physical symptoms of the disease: lipoatrophy (loss of fat tissues) affecting the trunk, limbs, and face; hepatomegaly; acromegaly; insulin resistance; and high serum levels of triglycerides. Genetic testing can also confirm the disease, as mutations in the AGPAT2 gene is indicative of CGL1, a mutation in the BSCL2 gene is indicative of CGL2, and mutations in the CAV1 and PTRF genes are indicative of CGL3 and CGL4 respectively. [10] Physical diagnosis of CGL is easier, as CGL patients are recognizable from birth, due to their extreme muscular appearance, which is caused by the absence of subcutaneous fat. [9]
CGL3 patients have serum creatine kinase concentrations much higher than normal (2.5 to 10 times the normal limit). This can be used to diagnose type 3 patients and differentiate them from CGL 1 and 2 without mapping their genes. Additionally, CGL3 patients have low muscle tone when compared with other CGL patients. [14]
Metformin is the main drug used for treatment, as it is normally used for patients with hyperglycemia. [15] Metformin reduces appetite and improves symptoms of hepatic steatosis and polycystic ovary syndrome. [4] Leptin can also be used to reverse insulin resistance and hepatic steatosis, to cause reduced food intake, and decrease blood glucose levels. [16]
CGL patients have to maintain a strict diet for life, as their excess appetite will cause them to overeat. Carbohydrate intake should be restricted in these patients. To avoid chylomicronemia, CGL patients with hypertriglyceridemia need to have a diet very low in fat. CGL patients also need to avoid total proteins, trans fats, and eat high amounts of soluble fiber to avoid getting high levels of cholesterol in the blood. [17]
Congenital generalized lipodystrophy, also known as Berardinelli–Seip lipodystrophy was first described in 1954 by Berardinelli [18] and later by Seip in 1959. [19] The gene for type 1 CGL was identified as AGPAT2 at chromosome 9q34, [20] and later the gene for type 2 CGL was identified as BSCL2 at chromosome 11q13. [21] More recently, type 3 CGL was identified as a separate type of CGL, which was identified as a mutation in the CAV1 gene. Then, a separate type 4 CGL was identified as a mutation in the PTRF gene. [22]
A congenital disorder of glycosylation is one of several rare inborn errors of metabolism in which glycosylation of a variety of tissue proteins and/or lipids is deficient or defective. Congenital disorders of glycosylation are sometimes known as CDG syndromes. They often cause serious, sometimes fatal, malfunction of several different organ systems in affected infants. The most common sub-type is PMM2-CDG where the genetic defect leads to the loss of phosphomannomutase 2 (PMM2), the enzyme responsible for the conversion of mannose-6-phosphate into mannose-1-phosphate.
Lipodystrophy syndromes are a group of genetic or acquired disorders in which the body is unable to produce and maintain healthy fat tissue. The medical condition is characterized by abnormal or degenerative conditions of the body's adipose tissue. A more specific term, lipoatrophy, is used when describing the loss of fat from one area. This condition is also characterized by a lack of circulating leptin which may lead to osteosclerosis. The absence of fat tissue is associated with insulin resistance, hypertriglyceridemia, non-alcoholic fatty liver disease (NAFLD) and metabolic syndrome.
Chylomicrons, also known as ultra low-density lipoproteins (ULDL), are lipoprotein particles that consist of triglycerides (85–92%), phospholipids (6–12%), cholesterol (1–3%), and proteins (1–2%). They transport dietary lipids, such as fats and cholesterol, from the intestines to other locations in the body, within the water-based solution of the bloodstream. ULDLs are one of the five major groups lipoproteins are divided into based on their density. A protein specific to chylomicrons is ApoB48.
Lipomatosis is believed to be an autosomal dominant condition in which multiple lipomas are present on the body. Many discrete, encapsulated lipomas form on the trunk and extremities, with relatively few on the head and shoulders. In 1993, a genetic polymorphism within lipomas was localized to chromosome 12q15, where the HMGIC gene encodes the high-mobility-group protein isoform I-C. This is one of the most commonly found mutations in solitary lipomatous tumors but lipomas often have multiple mutations. Reciprocal translocations involving chromosomes 12q13 and 12q14 have also been observed within.
Laminopathies are a group of rare genetic disorders caused by mutations in genes encoding proteins of the nuclear lamina. Since the first reports of laminopathies in the late 1990s, increased research efforts have started to uncover the vital role of nuclear envelope proteins in cell and tissue integrity in animals. Laminopathies are a group of degenerative diseases, other disorders associated with inner nuclear membrane proteins are known as nuclear envelopathies.
Barraquer–Simons syndrome is a rare form of lipodystrophy, which usually first affects the head, and then spreads to the thorax. It is named for Luis Barraquer Roviralta (1855–1928), a Spanish physician, and Arthur Simons (1879–1942), a German physician. Some evidence links it to LMNB2.
Seipin is a protein that in humans is encoded by the BSCL2 gene.
1-acyl-sn-glycerol-3-phosphate acyltransferase beta is an enzyme that in humans is encoded by the AGPAT2 gene.
Neutral lipid storage disease is a congenital autosomal recessive disorder characterized by accumulation of triglycerides in the cytoplasm of leukocytes, muscle, liver, fibroblasts, and other tissues. It commonly occurs as one of two subtypes, cardiomyopathic neutral lipid storage disease (NLSD-M), or ichthyotic neutral lipid storage disease (NLSD-I) which is also known as Chanarin–Dorfman syndrome), which are characterized primarily by myopathy and ichthyosis, respectively. Normally, the ichthyosis that is present is typically non-bullous congenital ichthyosiform erythroderma which appears as white scaling.
Acquired generalized lipodystrophy (AGL), also known as Lawrence syndrome and Lawrence–Seip syndrome, is a rare skin condition that appears during childhood or adolescence, characterized by fat loss affecting large areas of the body, particularly the face, arms, and legs. There are four types of lipodystrophy based on its onset and areas affected: acquired or inherited, and generalized or partial. Both acquired or inherited lipodystrophy present as loss of adipose tissues, in the absence of nutritional deprivation. The near-total loss of subcutaneous adipose tissue is termed generalized lipodystrophy while the selective loss of adipose tissues is denoted as partial lipodystrophy. Thus, as the name suggests, AGL is a near-total deficiency of adipose tissues in the body that is developed later in life. It is an extremely rare disease with only about 100 cases reported worldwide. There are three main etiologies of AGL suspected: autoimmune, panniculitis-associated, or idiopathic. After its onset, the disease progresses over a few days, weeks, months, or even in years. Clinical presentations of AGL are similar to other lipodystrophies, including metabolic complications and hypoleptinemia. Treatments are also similar and mainly supportive for symptomatic alleviation. Although HIV- or drug-induced lipodystrophy are types of acquired lipodystrophy, their origins are very specific and distinct and hence are usually not discussed with AGL.
Familial partial lipodystrophy, also known as Köbberling–Dunnigan syndrome, is a rare genetic metabolic condition characterized by the loss of subcutaneous fat.
Johanson–Blizzard syndrome (JBS) is a rare, sometimes fatal autosomal recessive multisystem congenital disorder featuring abnormal development of the pancreas, nose and scalp, with intellectual disability, hearing loss and growth failure. It is sometimes described as a form of ectodermal dysplasia.
Cantú syndrome is a rare condition characterized by hypertrichosis, osteochondrodysplasia, and cardiomegaly. Less than 50 cases have been described in the literature; they are associated with a mutation in the ABCC9-gene that codes for the ABCC9-protein.
Progeroid syndromes (PS) are a group of rare genetic disorders that mimic physiological aging, making affected individuals appear to be older than they are. The term progeroid syndrome does not necessarily imply progeria, which is a specific type of progeroid syndrome.
Wiedemann–Rautenstrauch (WR) syndrome, also known as neonatal progeroid syndrome, is a rare autosomal recessive progeroid syndrome. There have been over 30 cases of WR. WR is associated with abnormalities in bone maturation, and lipids and hormone metabolism.
Metreleptin, sold under the brand name Myalept among others, is a synthetic analog of the hormone leptin used to treat various forms of dyslipidemia. It has been approved in Japan for metabolic disorders including lipodystrophy and in the United States as replacement therapy to treat the complications of leptin deficiency, in addition to diet, in patients with congenital generalized or acquired generalized lipodystrophy.
Seipin is a homo-oligomeric integral membrane protein in the endoplasmic reticulum (ER) that concentrates at junctions with cytoplasmic lipid droplets (LDs). Alternatively, seipin can be referred to as Berardinelli–Seip congenital lipodystrophy type 2 protein (BSCL2), and it is encoded by the corresponding gene of the same name, i.e. BSCL2. At protein level, seipin is expressed in cortical neurons in the frontal lobes, as well as motor neurons in the spinal cord. It is highly expressed in areas like the brain, testis and adipose tissue. Seipin's function is still unclear but it has been localized close to lipid droplets, and cells knocked out in seipin have anomalous droplets. Hence, recent evidence suggests that seipin plays a crucial role in lipid droplet biogenesis.
Asprosin is a protein hormone produced by mammals in tissues that stimulates the liver to release glucose into the blood stream. Asprosin is encoded by the gene FBN1 as part of the protein profibrillin and is released from the C-terminus of the latter by specific proteolysis. In the liver, asprosin activates rapid glucose release via a cyclic adenosine monophosphate (cAMP)-dependent pathway.
Marfanoid–progeroid–lipodystrophy syndrome (MPL), also known as Marfan lipodystrophy syndrome (MFLS) or progeroid fibrillinopathy, is an extremely rare medical condition which manifests as a variety of symptoms including those usually associated with Marfan syndrome, an appearance resembling that seen in neonatal progeroid syndrome, and severe partial lipodystrophy. It is a genetic condition that is caused by mutations in the FBN1 gene, which encodes profibrillin, and affects the cleavage products of profibrillin, fibrillin-1, a fibrous structural protein, and asprosin, a glucogenic protein hormone. As of 2016, fewer than 10 cases of the condition have been reported. Lizzie Velásquez and Abby Solomon have become known publicly through the media for having the condition.
Facial infiltrating lipomatosis (FIL), also referred to as congenital infiltrating lipomatosis of the face or facial infused lipomatosis, is an ultra-rare craniofacial overgrowth condition caused by a genetic mutation of the PIK3CA gene. The condition is a part of the PIK3CA related overgrowth spectrum (PROS). The disease is congenital and non-hereditary. First described by Slavin and colleagues in 1983.