Diabetic foot ulcer | |
---|---|
Neuropathic diabetic foot ulcer | |
Causes | diabetes |
Diabetic foot ulcer is a breakdown of the skin and sometimes deeper tissues of the foot that leads to sore formation. It is thought to occur due to abnormal pressure or mechanical stress chronically applied to the foot, usually with concomitant predisposing conditions such as peripheral sensory neuropathy, peripheral motor neuropathy, autonomic neuropathy or peripheral arterial disease. [1] It is a major complication of diabetes mellitus, and it is a type of diabetic foot disease. Secondary complications to the ulcer, such as infection of the skin or subcutaneous tissue, bone infection, gangrene or sepsis are possible, often leading to amputation. [1]
A key feature of wound healing is stepwise repair of lost extracellular matrix (ECM), the largest component of the dermal skin layer. [2] However, in some cases, physiological insult or disorder - in this case, diabetes mellitus - impedes the wound healing process. In diabetic wounds, the inflammatory phase of the healing process is prolonged, delaying the formation of mature granulation tissue and reducing the healing wound's tensile strength. [3]
Treatment of diabetic foot ulcers includes blood sugar control, removal of dead tissue from the wound, wound dressings, and removing pressure from the wound through techniques such as total contact casting. Surgery in some cases may improve outcomes. [4] Hyperbaric oxygen therapy may also help but is expensive. [4]
34% of people with diabetes develop a diabetic foot ulcer during their lifetime, and 84% of all diabetes-related lower-leg amputations are associated with or result from diabetic foot ulcers. [5]
Risk factors implicated in the development of diabetic foot ulcers are infection, older age, [6] diabetic neuropathy, [7] peripheral vascular disease, cigarette smoking, poor glycemic control, previous foot ulcerations [7] or amputations, [5] and ischemia of small and large blood vessels. [8] [9] Prior history of foot disease, foot deformities that produce abnormally high forces of pressure, callus at pressure areas [7] renal failure, oedema, impaired ability to look after personal care (e.g. visual impairment) are further risk factors for diabetic foot ulcer. [6] [5]
People with diabetes often develop diabetic neuropathy due to several metabolic and neurovascular factors. Peripheral neuropathy causes loss of pain or feeling in the toes, feet, legs, and arms due to distal nerve damage and low blood flow. Autonomic neuropathy causes Sudomotor dysfunction and dryness of the skin. Blisters and sores may appear on numb areas of the feet and legs, such as metatarsophalangeal joints and the heel region, as a result of pressure or injury which may go unnoticed and eventually become a portal of entry for bacteria and infection.[ citation needed ]
Extra cellular matrix (or "ECM") is the external structural framework that cells attach to in multicellular organisms. The dermis lies below the epidermis, and these two layers are collectively known as the skin. Dermal skin is primarily a combination of fibroblasts growing in this matrix. The specific species of ECM of connective tissues often differ chemically, but collagen generally forms the bulk of the structure.[ citation needed ]
Through the interaction of a cell with its extracellular matrix (transmitted through the anchoring molecules classed as integrins) there forms a continuous association between the cell interior, cell membrane and its extracellular matrix components that helps drive various cellular events in a regulated fashion. [10] Wound healing is a localized event involving the reaction of cells to the damage sustained.[ citation needed ]
The cells break down damaged ECM and replace it, generally increasing in number to react to the harm. The process is activated, though perhaps not exclusively, by cells responding to fragments of damaged ECM, and the repairs are made by reassembling the matrix by cells growing on and through it. Because of this, extracellular matrix is often considered as a 'conductor of the wound healing symphony'. [11] In the Inflammatory phase, neutrophils and macrophages recruit and activate fibroblasts which in subsequent granulation phase migrate into the wound, laying down new collagen of the subtypes I and III.[ citation needed ]
In the initial events of wound healing, collagen III predominates in the granulation tissue which later on in remodeling phase gets replaced by collagen I giving additional tensile strength to the healing tissue. [12] [13] It is evident from the known collagen assembly that the tensile strength is basically due to fibrillar arrangement of collagen molecules, which self-assemble into microfibrils in a longitudinal as well as lateral manner producing extra strength and stability to the collagen assembly. [13] [14] Metabolically altered collagen is known to be highly inflexible and prone to break down, particularly over pressure areas. Fibronectin is the major glycoprotein secreted by fibroblasts during initial synthesis of extracellular matrix proteins. It serves important functions, being a chemo-attractant for macrophages, fibroblasts and endothelial cells.[ citation needed ]
The basement membrane that separates the epidermis from the dermal layer and the endothelial basement membrane mainly contains collagen IV that forms a sheet and binds to other extracellular matrix molecules like laminin and proteoglycans. In addition to collagen IV, the epidermal and endothelial basement membrane also contains laminin, perlecan and nidogen. [13] [14] Hyaluronic acid, a pure glycosaminoglycan component, is found in high amounts in damaged or growing tissues. It stimulates cytokine production by macrophages and thus promotes angiogenesis. In normal skin chondroitin sulfate proteoglycan is mainly found in the basement membrane, but in healing wounds they are up-regulated throughout the granulation tissue especially during the second week of wound repair where they provide a temporary matrix with highly hydrative capacity. [15] Binding of growth factors is clearly an important role of perlecan in wound healing and angiogenesis. Poor wound healing in diabetes mellitus may be related to perlecan expression. High levels of glucose can decrease perlecan expression in some cells, probably through transcriptional and post-transcriptional modification. [15] [16] Wound healing phases especially, granulation, re-epithelization and remodelling exhibit controlled turnover of extracellular matrix components.[ citation needed ]
Diabetes mellitus is a metabolic disorder and hence the defects observed in diabetic wound healing are thought to be the result of altered protein and lipid metabolism and thereby abnormal granulation tissue formation. [17] Increased glucose levels in the body end up in uncontrolled covalent bonding of aldose sugars to a protein or lipid without any normal glycosylation enzymes. [18] These stable products then accumulate over the surface of cell membranes, structural proteins and circulating proteins. These products are called advanced glycation endproducts (AGEs) or Amadori products. Formation of AGEs occurs on extracellular matrix proteins with slow turnover rate. AGEs alter the properties of matrix proteins such as collagen, vitronectin, and laminin through AGE-AGE intermolecular covalent bonds or cross-linking. [18] [19] [20] AGE cross-linking on type I collagen and elastin results in increased stiffness. AGEs are also known to increase synthesis of type III collagen that forms the granulation tissue. AGEs on laminin result in reduced binding to type IV collagen in the basement membrane, reduced polymer elongation and reduced binding of heparan sulfate proteoglycan. [18]
Complications in the diabetic foot and foot-ankle complex are wider and more destructive than expected and may compromise the structure and function of several systems: vascular, nervous, somatosensory, musculoskeletal. Thus, deeper comprehension of the alteration of gait and foot biomechanics in the diabetic foot is of great interest and may play a role in the design and onset of preventive as well as therapeutic actions.[ citation needed ]
Briefly, the effect of diabetes on the main structures of the foot-ankle complex can be summarised as:
Assessment of diabetic foot ulcer includes identifying risk factors such as diabetic peripheral neuropathy, noting that 50 percent of people are asymptomatic, and ruling out other causes of peripheral neuropathy such as alcohol use disorder and spinal injury. [6] Diabetic foot ulcers are often misdiagnosed in patients with undiagnosed skin malignancies, especially high-risk in elderly patients. [40] [41]
The location of the ulcer, its size, shape, depth and whether the tissue is granulating or sloughy needs to be considered. Further considerations include whether there is malodour, condition of the border of the wound and palpable bone and sinus formation should be investigated. Signs of infection require to be considered such as development of grey or yellow tissue, purulent discharge, unpleasant smell, sinus, undermined edges and exposure of bone or tendon. [42]
Diabetic foot ulcer is a complication of diabetes. Diabetic foot ulcers are classified as either neuropathic, neuroischaemic or ischaemic. [42]
Doctors also use the Wagner Grades to describe the severity of an ulcer. The purpose of the Wagner Grades is to allow specialists to better monitor and treat diabetic foot ulcers. This grading system classifies Diabetic foot ulcers using numbers, from 0 to 5.
Wagner Grades 0 through 5 are as follows:[ citation needed ]
Steps to prevent diabetic foot ulcers include frequent review by a foot specialist and multidisciplinary team, [7] good foot hygiene, diabetic socks [44] and shoes, as well as avoiding injury. Foot-care education combined with increased surveillance can reduce the incidence of serious foot lesions. [45]
There is no high quality researches that evaluate complex intervention of combining two or more preventive strategies in preventing diabetic foot ulcer. [46]
People with loss of feeling in their feet should inspect their feet on a daily basis, to ensure that there are no wounds starting to develop. [47] [48] Monitoring a person's feet can help in predicting the likelihood of developing ulcers.[ citation needed ]
A common method for this is using a special thermometer to look for spots on the foot that have higher temperature which indicate the possibility of an ulcer developing. [49] At the same time there is no strong scientific evidence supporting the effectiveness of at-home foot temperature monitoring. [50]
The current guideline in the United Kingdom recommends collecting 8-10 pieces of information for predicting the development of foot ulcers. [51] A simpler method proposed by researchers provides a more detailed risk score based on three pieces of information (insensitivity, foot pulse, previous history of ulcers or amputation). This method is not meant to replace people regularly checking their own feet but complement it. [49] [52]
Diabetic shoes, insoles and socks are personalised products that relieve pressure on the foot in order to prevent ulcers. [53] The evidence for special footwear to treat foot ulcers is poor [54] but their effectiveness for prevention is well-established. [55] [56] [57] Design features of footwear that are effective in reducing pressure are arch supports, cushioned cut-outs around points at risk of damage, and cushioning at the ball of the foot. Technology for measuring the pressure within the shoes is recommended during designing diabetic footwear. [58] [59]
People with loss of feeling in their feet should not walk around barefoot, but use proper footwear at all times.
Foot ulcers in diabetes require a multidisciplinary team that may include the primary care doctor, a diabetes nurse specialist, a tissue viability nurse, [42] podiatrists, vascular surgeons, diabetes specialists and surgeons. [1] An aim to improve glycemic control, if poor, may slow disease progression. [6] When osteomyelitis is suspected to be involved in the foot, but not evidenced on an x-ray, an MRI scan should be obtained. [42] In those with a high likelihood of osteomyelitis, a combination of x-ray and being able to probe to bone can reliably diagnose osteomyelitis without the need for more advanced imaging. [1] A bone biopsy with culture is the gold standard for diagnosing osteomyelitis. [1]
With regards to infected foot ulcers, the presence of microorganisms is not in itself enough to determine whether an infection is present. Signs of an infection such as erythema, purulence, fluctuance, swelling, warmth, or discharge should also be present. The most common organism causing infection is staphylococcus. [5] The treatment consists of debridement, appropriate bandages, managing peripheral arterial disease and appropriate use of antibiotics [5] (against pseudomonas aeruginosa, staphylococcus, streptococcus and anaerobe strains), and arterial revascularization if necessary.
The length of antibiotic courses depend on the severity of the infection and whether bone infection is involved but can range from 1 week to 6 weeks or more. Current recommendations are that antibiotics are only used when there is evidence of infection and continued until there is evidence that the infection has cleared, instead of evidence of ulcer healing. Choice of antibiotic depends on common local bacterial strains known to infect ulcers. Microbiological swabs are believed to be of limited value in identifying causative strain. [6] Microbiological investigation is of value in cases of osteomyelitis. [42] Most ulcer infections involve multiple microorganisms. [5]
There is limited safety and efficacy data of topical antibiotics in treating diabetic foot ulcers. [60]
There are many types of dressings used to treat diabetic foot ulcers such as absorptive fillers, hydrogel dressings, and hydrocolloids. [61] There is no good evidence that one type of dressing is better than another for diabetic foot ulcers. [62] In selecting dressings for chronic non healing wounds it is recommended that the cost of the product be taken into account. [63]
Hydrogel dressings may have shown a slight advantage over standard dressings, but the quality of the research is of concern. [64] [65] Dressings and creams containing silver have not been properly studied [66] nor have alginate dressings. [67] Biologically active bandages that combine hydrogel and hydrocolloid traits are available, however more research needs to be conducted as to the efficacy of this option over others. [61]
Total contact casting (TCC) is a specially designed cast designed to take weight of the foot (off-loading) in patients with DFUs. Reducing pressure on the wound by taking weight of the foot has proven to be very effective in DFU treatment. DFUs are a major factor leading to lower leg amputations among the diabetic population in the US with 85% of amputations in diabetics being preceded by a DFU. [68] Furthermore, the 5 year post-amputation mortality rate among diabetics is estimated at 45% for those with neuropathic DFUs. [68]
TCC has been used for off-loading DFUs in the US since the mid-1960s and is regarded by many practitioners as the "reference standard" for off-loading the bottom surface (sole) of the foot. [69]
TCC helps patients to maintain their quality of life. By encasing the patient's complete foot — including the toes and lower leg — in a specialist cast to redistribute weight and pressure from the foot to the lower leg during everyday movements, patients can remain mobile. [70] The manner in which TCC redistributes pressure protects the wound, letting damaged tissue regenerate and heal. [71] TCC also keeps the ankle from rotating during walking, which helps prevent shearing and twisting forces that can further damage the wound. [72]
Effective off loading is a key treatment modality for DFUs, particularly those where there is damage to the nerves in the feet (peripheral neuropathy). Along with infection management and vascular assessment, TCC is vital aspect to effectively managing DFUs. [72] TCC is the most effective and reliable method for off-loading DFUs. [73] [74] [75]
A 2013 meta-analysis by the Cochrane Collaboration compared the effectiveness of non-removable pressure relieving interventions, such as casts, with therapeutic shoes, dressings, removable pressure relieving orthotic devices, and surgical interventions. Non-removable pressure relieving interventions, including non-removable casts with an Achilles tendon lengthening component, were found to be more effective at healing foot ulcers related to diabetes that therapeutic shoes and other pressure relieving approaches. [76]
TCC systems include TCC-EZ (Integra LifeSciences) and Cutimed Off-loader (BSN Medical). [77]
In 2015, a Cochrane review concluded that for people with diabetic foot ulcers, hyperbaric oxygen therapy reduced the risk of amputation and may improve the healing at 6 weeks. [78] However, there was no benefit at one year and the quality of the reviewed trials was inadequate to draw strong conclusions. [78]
This treatment uses vacuum to remove excess fluid and cellular waste that usually prolong the inflammatory phase of wound healing. Despite a straightforward mechanism of action, results of negative pressure wound therapy studies have been inconsistent. Research needs to be carried out to optimize the parameters of pressure intensity, treatment intervals and exact timing to start negative pressure therapy in the course of chronic wound healing. [79]
There is low-certainty evidence that negative pressure wound therapy would improve wound healing in diabetic foot ulcers. [80]
Ozone therapy – there is only limited and poor-quality information available regarding the effectiveness of ozone therapy for treating foot ulcers in people with diabetes. [81]
Growth factors - there is some low-quality evidence that growth factors may increase the likelihood that diabetic foot ulcers will heal completely. [82]
Continuous diffusion of oxygen (CDO) - CDO delivers continuous oxygen to an occluded, moist wound site at much lower flow rates of 3–12 mL/h for 24 h 7 days a week for up to several weeks or months, depending on the wound status. [83]
Phototherapy - there is very weak evidence to suggest that people with foot ulcers due to diabetes may have improved healing. [84] There is no evidence to suggest that phototherapy improves the quality of life for people with foot ulcers caused by diabetes. [84]
Sucrose-octasulfate impregnated dressing is recommended by the International Working Group on the Diabetic Foot Ulcer (IWGDF) [85] for the treatment of non-infected, neuro-ischaemic diabetic foot ulcers that do not show an improvement with a standard of care regimen [86]
Autologous combined leucocyte, platelet and fibrin as an adjunctive treatment, in addition to best standard of care is also recommended by IWGDF [87] However, there is only low quality evidence that such treatment is effective in treating diabetic foot ulcer. [88]
There is limited evidence that granulocyte colony-stimulating factor may not hasten the resolution of diabetic foot ulcer infection. However, it may reduce the need for surgical interventions such as amputations and hospitalizations. [89]
It is unknown that whether intensive or conventional blood glucose control is better for diabetic foot ulcer healing. [90]
A 2020 Cochrane systematic review evaluated the effects of nutritional supplements or special diets on healing foot ulcers in people with diabetes. The review authors concluded that it's uncertain whether or not nutritional interventions have an effect on foot ulcer healing and that more research is needed to answer this question. [91]
Skin grafting and tissue replacements can help to improve the healing of diabetic foot ulcer. [92]
A 2021 systematic review concluded that there was no strong evidence about the effects of psychological therapies on diabetic foot ulcer healing and recurrence. [93]
Approximately 34% of people with diabetes (Type 1 or Type 2 diabetes) will develop a foot ulcer in their lifetime. [1] 18.6 million people worldwide will develop a foot ulcer each year. [1] 15-20% of moderately to severely infected foot ulcers eventually lead to amputation, and the mortality rate of diabetic foot ulcers is 30% at 5 years with a mortality rate of 70% in those with a foot ulcer who receive an above the foot amputation. [1] Foot ulcers and amputations are associated with a reduced quality of life. In the United States; Black people, Native Americans, Hispanics and those living in rural areas or those with a lower socioeconomic status have an increased rate of amputations due to diabetic foot ulcers. [1]
Approximately 8.8 percent of hospital admissions of diabetic patients are for foot related problems, and such hospital admissions are about 13 days longer than for diabetics without foot related admissions. [5] Approximately 58% of ulcers recur within 3 years and up to 65% recur within 5 years, sometimes at a different location that the original ulcer. [79] Diabetic foot disease is the leading cause of non-traumatic lower limb amputations. [6]
Stem cell therapy may represent a treatment for promoting healing of diabetic foot ulcers. [94] [95] Diabetic foot ulcers develop their own, distinctive microbiota. Investigations into characterizing and identifying the phyla, genera and species of nonpathogenic bacteria or other microorganisms populating these ulcers may help identify one group of microbiota that promotes healing. [96]
The recent advances in epigenetic modifications, with special focus on aberrant macrophage polarisation is giving increasing evidences that epigenetic modifications might play a vital role in changing the treatment of diabetic foot ulcer in the near future. [97]
A scar is an area of fibrous tissue that replaces normal skin after an injury. Scars result from the biological process of wound repair in the skin, as well as in other organs, and tissues of the body. Thus, scarring is a natural part of the healing process. With the exception of very minor lesions, every wound results in some degree of scarring. An exception to this are animals with complete regeneration, which regrow tissue without scar formation.
Gangrene is a type of tissue death caused by a lack of blood supply. Symptoms may include a change in skin color to red or black, numbness, swelling, pain, skin breakdown, and coolness. The feet and hands are most commonly affected. If the gangrene is caused by an infectious agent, it may present with a fever or sepsis.
An ulcer is a sore on the skin or a mucous membrane, accompanied by the disintegration of tissue. Ulcers can result in complete loss of the epidermis and often portions of the dermis and even subcutaneous fat. Ulcers are most common on the skin of the lower extremities and in the gastrointestinal tract. An ulcer that appears on the skin is often visible as an inflamed tissue with an area of reddened skin. A skin ulcer is often visible in the event of exposure to heat or cold, irritation, or a problem with blood circulation.
A wound is any disruption of or damage to living tissue, such as skin, mucous membranes, or organs. Wounds can either be the sudden result of direct trauma, or can develop slowly over time due to underlying disease processes such as diabetes mellitus, venous/arterial insufficiency, or immunologic disease. Wounds can vary greatly in their appearance depending on wound location, injury mechanism, depth of injury, timing of onset, and wound sterility, among other factors. Treatment strategies for wounds will vary based on the classification of the wound, therefore it is essential that wounds be thoroughly evaluated by a healthcare professional for proper management. In normal physiology, all wounds will undergo a series of steps collectively known as the wound healing process, which include hemostasis, inflammation, proliferation, and tissue remodeling. Age, tissue oxygenation, stress, underlying medical conditions, and certain medications are just a few of the many factors known to affect the rate of wound healing.
Wound healing refers to a living organism's replacement of destroyed or damaged tissue by newly produced tissue.
Diabetic neuropathy includes various types of nerve damage associated with diabetes mellitus. The most common form, diabetic peripheral neuropathy, affects 30% of all diabetic patients. Symptoms depend on the site of nerve damage and can include motor changes such as weakness; sensory symptoms such as numbness, tingling, or pain; or autonomic changes such as urinary symptoms. These changes are thought to result from a microvascular injury involving small blood vessels that supply nerves. Relatively common conditions which may be associated with diabetic neuropathy include distal symmetric polyneuropathy; third, fourth, or sixth cranial nerve palsy; mononeuropathy; mononeuropathy multiplex; diabetic amyotrophy; and autonomic neuropathy.
Pressure ulcers, also known as pressure sores, bed sores or pressure injuries, are localised damage to the skin and/or underlying tissue that usually occur over a bony prominence as a result of usually long-term pressure, or pressure in combination with shear or friction. The most common sites are the skin overlying the sacrum, coccyx, heels, and hips, though other sites can be affected, such as the elbows, knees, ankles, back of shoulders, or the back of the cranium.
Maggot therapy is a type of biotherapy involving the introduction of live, disinfected maggots into non-healing skin and soft-tissue wounds of a human or other animal for the purpose of cleaning out the necrotic (dead) tissue within a wound (debridement), and disinfection.
Venous ulcer is defined by the American Venous Forum as "a full-thickness defect of skin, most frequently in the ankle region, that fails to heal spontaneously and is sustained by chronic venous disease, based on venous duplex ultrasound testing." Venous ulcers are wounds that are thought to occur due to improper functioning of venous valves, usually of the legs. They are an important cause of chronic wounds, affecting 1% of the population. Venous ulcers develop mostly along the medial distal leg, and can be painful with negative effects on quality of life.
A chronic wound is a wound that does not heal in an orderly set of stages and in a predictable amount of time the way most wounds do; wounds that do not heal within three months are often considered chronic. Chronic wounds seem to be detained in one or more of the phases of wound healing. For example, chronic wounds often remain in the inflammatory stage for too long. To overcome that stage and jump-start the healing process, a number of factors need to be addressed such as bacterial burden, necrotic tissue, and moisture balance of the whole wound. In acute wounds, there is a precise balance between production and degradation of molecules such as collagen; in chronic wounds this balance is lost and degradation plays too large a role.
Negative-pressure wound therapy (NPWT), also known as a vacuum assisted closure (VAC), is a therapeutic technique using a suction pump, tubing, and a dressing to remove excess exudate and promote healing in acute or chronic wounds and second- and third-degree burns. The therapy involves the controlled application of sub-atmospheric pressure to the local wound environment using a sealed wound dressing connected to a vacuum pump. The use of this technique in wound management started in the 1990s and this technique is often recommended for treatment of a range of wounds including dehisced surgical wounds, closed surgical wounds, open abdominal wounds, open fractures, pressure injuries or pressure ulcers, diabetic foot ulcers, venous insufficiency ulcers, some types of skin grafts, burns, sternal wounds. It may also be considered after a clean surgery in a person who is obese.
A hydrocolloid dressing is an opaque or transparent dressing for wounds. A hydrocolloid dressing is biodegradable, breathable, and depending on the dressing selected, may adhere to the skin, so no separate taping is needed.
Diabetic shoes are specially designed shoes, or shoe inserts, intended to reduce the risk of skin breakdown in diabetics with existing foot disease and relieve pressure to prevent diabetic foot ulcers.
The dermal equivalent, also known as dermal replacement or neodermis, is an in vitro model of the dermal layer of skin. There is no specific way of forming a dermal equivalent, however the first dermal equivalent was constructed by seeding dermal fibroblasts into a collagen gel. This gel may then be allowed to contract as a model of wound contraction. This collagen gel contraction assay may be used to screen for treatments which promote or inhibit contraction and thus affect the development of a scar. Other cell types may be incorporated into the dermal equivalent to increase the complexity of the model. For example, keratinocytes may be seeded on the surface to create a skin equivalent, or macrophages may be incorporated to model the inflammatory phase of wound healing.
An alginate dressing is a natural wound dressing derived from carbohydrate sources released by clinical bacterial species, in the same manner as biofilm formation. These types of dressings are best used on wounds that have a large amount of exudate. They may be used on full-thickness burns, surgical wounds, split-thickness graft donor sites, Mohs surgery defects, refractory decubiti, and chronic ulcers. They can also be applied onto dry wounds after normal saline is first applied to the site of application.
A diabetic foot disease is any condition that results directly from peripheral artery disease (PAD) or sensory neuropathy affecting the feet of people living with diabetes. Diabetic foot conditions can be acute or chronic complications of diabetes. Presence of several characteristic diabetic foot pathologies such as infection, diabetic foot ulcer and neuropathic osteoarthropathy is called diabetic foot syndrome. The resulting bone deformity is known as Charcot foot.
Chronic wound pain is a condition described as unremitting, disabling, and recalcitrant pain experienced by individuals with various types of chronic wounds. Chronic wounds such as venous leg ulcers, arterial ulcers, diabetic foot ulcers, pressure ulcers, and malignant wounds can have an enormous impact on an individual’s quality of life with pain being one of the most distressing symptoms.
Total contact casting (TCC) is a specially designed cast designed to take weight off of the foot (off-loading) in patients with diabetic foot ulcers (DFUs). Reducing pressure on the wound by taking weight off the foot has proven to be very effective in DFU treatment. DFUs are a major factor leading to lower leg amputations among the diabetic population in the US with 85% of amputations in diabetics being preceded by a DFU. Furthermore, the five-year post-amputation mortality rate among diabetics is estimated at 45% for those with neuropathic DFUs.
Hydrogel dressing is a medical dressing based on hydrogels, three-dimensional hydrophilic structure. The insoluble hydrophilic structures absorb polar wound exudates and allow oxygen diffusion at the wound bed to accelerate healing. Hydrogel dressings can be designed to prevent bacterial infection, retain moisture, promote optimum adhesion to tissues, and satisfy the basic requirements of biocompatibility. Hydrogel dressings can also be designed to respond to changes in the microenvironment at the wound bed. Hydrogel dressings should promote an appropriate microenvironment for angiogenesis, recruitment of fibroblasts, and cellular proliferation.
Diabetic foot infection is any infection of the foot in a diabetic person. The most frequent cause of hospitalization for diabetic patients is due to foot infections. Symptoms may include pus from a wound, redness, swelling, pain, warmth, tachycardia, or tachypnea. Complications can include infection of the bone, tissue death, amputation, or sepsis. They are common and occur equally frequently in males and females. Older people are more commonly affected.
97.^ Jayesh Kakar https://savelegs.com/negative-pressure-wound-therapy-in-foot-infections-in-diabetics-effect-on-duration-of-antibiotic-therapy-method-negative-pressure-wound-therapy-has-be/ External links