Diabetic foot

Last updated
Diabetic foot
Other namesDiabetic foot syndrome
Neuropathic heel ulcer diabetic.jpg
Neuropathic diabetic foot ulcer
Specialty Infectious disease, endocrinology, surgery

A diabetic foot disease is any condition that results directly from peripheral artery disease (PAD) or sensory neuropathy affecting the feet of people living with diabetes. Diabetic foot conditions can be acute or chronic complications of diabetes. [1] Presence of several characteristic diabetic foot pathologies such as infection, diabetic foot ulcer and neuropathic osteoarthropathy is called diabetic foot syndrome. The resulting bone deformity is known as Charcot foot.

Contents

Due to advanced peripheral nerve dysfunction associated with diabetes (diabetic neuropathy), patients' feet have a dryness of the skin and a reduced ability to feel pain (nociception). Hence, minor injuries may remain undiscovered and subsequently progress to a full-thickness diabetic foot ulcer. Moreover, foot surgery is well tolerated without anaesthesia. [2] The feet's insensivity to pain can easily be established by 512 mN quantitative pinprick stimulation. [3] In diabetes, peripheral nerve dysfunction can be combined with peripheral artery disease (PAD) causing poor blood circulation to the extremities (diabetic angiopathy). [4] Around half of the patients with a diabetic foot ulcer have co-existing PAD. [5] [6] Vitamin D deficiency has been recently found to be associated with diabetic foot infections and increased risk of amputations and deaths. [7] Research estimates that the lifetime incidence of foot ulcers within the diabetic community is around 15% and may become as high as 25%. [8] Where wounds take a long time to heal, infection may set in, spreading to bones and joints, and lower limb amputation may be necessary. Foot infection is the most common cause of non-traumatic amputation in people with diabetes. [9]

Prevention

Prevention of diabetic foot may include optimising metabolic control via the regulation of blood glucose levels; identification and screening of people at high risk for diabetic foot ulceration, especially those with advanced painless neuropathy; and patient education in order to promote foot self-examination and foot care knowledge. Patients would be taught routinely to inspect their feet for hyperkeratosis, fungal infection, skin lesions and foot deformities. Control of footwear is also important as repeated trauma from tight shoes can be a triggering factor, [10] especially where peripheral neuropathy is present. Evidence is limited that low-quality patient education courses have a long-term preventative impact. [11]

Foot screening guidelines have been previously reviewed, with a view to examining their completeness in terms of advancement in clinical practice, improvements in technology, and changes in socio-cultural structure. Results suggested that limitations of available guidelines and lack of evidence on which the guidelines were based were responsible for the gaps between guidelines, standard clinical practice, and development of complications. It concluded that for the development of standard recommendations and everyday clinical practice, it was necessary to pay more attention to both the limitations of guidelines and the underlying evidence. [12]

According to a 2011 meta-analysis of randomised controlled trials, only foot temperature-guided avoidance therapy was found beneficial in preventing ulceration. [13]

Prediction

Monitoring a person's feet can help in predicting the likelihood of developing ulcers. A common method for this is using a special thermometer to look for spots on the foot that have higher temperature which indicate the possibility of an ulcer developing. [14] At the same time there is no strong scientific evidence supporting the effectiveness of at-home foot temperature monitoring. [15]

The current guideline in the United Kingdom recommends collecting 8-10 pieces of information for predicting the development of foot ulcers. [16] A simpler method proposed by researchers provides a more detailed risk score based on three pieces of information (insensitivity, foot pulse, previous history of ulcers or amputation). This method is not meant to replace people regularly checking their own feet but complement it. [14] [17]

Once ulcers develop, the Wagner and UT scales are two methods that physicians use to determine the severity of the ulcer. These scales are the best known predictors of lower extremity amputations once ulcers develop. [18]

Treatment

Treatment of diabetic foot ulceration can be challenging and prolonged; it may include orthopaedic appliances, surgery and antimicrobial drugs and topical dressings. [11]

Most diabetic foot infections (DFIs) require treatment with systemic antibiotics. The choice of the initial antibiotic treatment depends on several factors such as the severity of the infection, whether the patient has received another antibiotic treatment for it, and whether the infection has been caused by a micro-organism that is known to be resistant to usual antibiotics (e.g. MRSA). The objective of antibiotic therapy is to stop the infection and ensure it does not spread. [19]

It is unclear whether any particular antibiotic is better than any other for curing infection or avoiding amputation. One trial suggested that ertapenem with or without vancomycin is more effective than tigecycline for resolving DFIs. It is also generally unclear whether different antibiotics are associated with more or fewer adverse effects. [9]

It is recommended however that the antibiotics used for treatment of diabetic foot ulcers should be used after deep tissue culture of the wound. Tissue culture and not pus swab culture should be done. Antibiotics should be used at correct doses in order to prevent the emergence of drug resistance. It is unclear if local antibiotics improve outcomes after surgery. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Gangrene</span> Type of tissue death by infection or lack of blood supply

Gangrene is a type of tissue death caused by a lack of blood supply. Symptoms may include a change in skin color to red or black, numbness, swelling, pain, skin breakdown, and coolness. The feet and hands are most commonly affected. If the gangrene is caused by an infectious agent, it may present with a fever or sepsis.

<span class="mw-page-title-main">Ulcer (dermatology)</span> Type of cutaneous condition

An ulcer is a sore on the skin or a mucous membrane, accompanied by the disintegration of tissue. Ulcers can result in complete loss of the epidermis and often portions of the dermis and even subcutaneous fat. Ulcers are most common on the skin of the lower extremities and in the gastrointestinal tract. An ulcer that appears on the skin is often visible as an inflamed tissue with an area of reddened skin. A skin ulcer is often visible in the event of exposure to heat or cold, irritation, or a problem with blood circulation.

<span class="mw-page-title-main">Callus</span> Thickened and hardened area of skin

A callus is an area of thickened and sometimes hardened skin that forms as a response to repeated friction, pressure, or other irritation. Since repeated contact is required, calluses are most often found on the feet and hands, but they may occur anywhere on the skin. Some degree of callus, such as on the bottom of the foot, is normal.

<span class="mw-page-title-main">Peripheral artery disease</span> Abnormal narrowing of arteries other than those that supply the heart or brain

Peripheral artery disease (PAD) is a vascular disorder that causes abnormal narrowing of arteries other than those that supply the heart or brain. PAD can happen in any blood vessel, but it is more common in the legs than the arms.

Diabetic neuropathy includes various types of nerve damage associated with diabetes mellitus. The most common form, diabetic peripheral neuropathy, affects 30% of all diabetic patients. Symptoms depend on the site of nerve damage and can include motor changes such as weakness; sensory symptoms such as numbness, tingling, or pain; or autonomic changes such as urinary symptoms. These changes are thought to result from a microvascular injury involving small blood vessels that supply nerves. Relatively common conditions which may be associated with diabetic neuropathy include distal symmetric polyneuropathy; third, fourth, or sixth cranial nerve palsy; mononeuropathy; mononeuropathy multiplex; diabetic amyotrophy; and autonomic neuropathy.

<span class="mw-page-title-main">Peripheral neuropathy</span> Nervous system disease affecting nerves beyond the brain and spinal cord

Peripheral neuropathy, often shortened to neuropathy, refers to damage or disease affecting the nerves. Damage to nerves may impair sensation, movement, gland function, and/or organ function depending on which nerve fibers are affected. Neuropathies affecting motor, sensory, or autonomic nerve fibers result in different symptoms. More than one type of fiber may be affected simultaneously. Peripheral neuropathy may be acute or chronic, and may be reversible or permanent.

A complication in medicine, or medical complication, is an unfavorable result of a disease, health condition, or treatment. Complications may adversely affect the prognosis, or outcome, of a disease. Complications generally involve a worsening in the severity of the disease or the development of new signs, symptoms, or pathological changes that may become widespread throughout the body and affect other organ systems. Thus, complications may lead to the development of new diseases resulting from previously existing diseases. Complications may also arise as a result of various treatments.

Neuropathic arthropathy refers to a progressive fragmentation of bones and joints in the presence of neuropathy. It can occur in any joint where denervation is present, although it most frequently presents in the foot and ankle. It follows an episodic pattern of early inflammation followed by periarticular destruction, bony coalescence, and finally bony remodeling. This can lead to considerable deformity and morbidity, including limb instability, ulceration, infection, and amputation.

A chronic wound is a wound that does not heal in an orderly set of stages and in a predictable amount of time the way most wounds do; wounds that do not heal within three months are often considered chronic. Chronic wounds seem to be detained in one or more of the phases of wound healing. For example, chronic wounds often remain in the inflammatory stage for too long. To overcome that stage and jump-start the healing process, a number of factors need to be addressed such as bacterial burden, necrotic tissue, and moisture balance of the whole wound. In acute wounds, there is a precise balance between production and degradation of molecules such as collagen; in chronic wounds this balance is lost and degradation plays too large a role.

<span class="mw-page-title-main">Diabetic shoe</span> Shoes intended to reduce the risk of skin breakdown in diabetics

Diabetic shoes are specially designed shoes, or shoe inserts, intended to reduce the risk of skin breakdown in diabetics with existing foot disease and relieve pressure to prevent diabetic foot ulcers.

<span class="mw-page-title-main">David G. Armstrong</span> American podiatric surgeon and researcher

David G. Armstrong is an American podiatric surgeon and researcher most widely known for his work in amputation prevention, the diabetic foot, and wound healing. He and his frequent collaborators, Lawrence A. Lavery and Andrew J.M. Boulton, have together produced many key works in the taxonomy, classification and treatment of the diabetic foot. He is Professor of Surgery with Tenure and director of the Southwestern Academic Limb Salvage Alliance (SALSA) at the Keck School of Medicine of the University of Southern California and has produced more than 700 peer reviewed manuscripts and more than 115 book chapters.

<span class="mw-page-title-main">Arterial insufficiency ulcer</span> Skin sore on the hands and feet due to insufficient blood flow

Arterial insufficiency ulcers are mostly located on the lateral surface of the ankle or the distal digits. They are commonly caused by peripheral artery disease (PAD).

Complications of diabetes are secondary diseases that are a result of elevated blood glucose levels that occur in diabetic patients. These complications can be divided into two types: acute and chronic. Acute complications are complications that develop rapidly and can be exemplified as diabetic ketoacidosis (DKA), hyperglycemic hyperosmolar state (HHS), lactic acidosis (LA), and hypoglycemia. Chronic complications develop over time and are generally classified in two categories: microvascular and macrovascular. Microvascular complications include neuropathy, nephropathy, and retinopathy; while cardiovascular disease, stroke, and peripheral vascular disease are included in the macrovascular complications.

Hereditary sensory and autonomic neuropathy type I or hereditary sensory neuropathy type I is a group of autosomal dominant inherited neurological diseases that affect the peripheral nervous system particularly on the sensory and autonomic functions. The hallmark of the disease is the marked loss of pain and temperature sensation in the distal parts of the lower limbs. The autonomic disturbances, if present, manifest as sweating abnormalities.

<span class="mw-page-title-main">Diabetic foot ulcer</span> Medical condition

Diabetic foot ulcer is a breakdown of the skin and sometimes deeper tissues of the foot that leads to sore formation. It is thought to occur due to abnormal pressure or mechanical stress chronically applied to the foot, usually with concomitant predisposing conditions such as peripheral sensory neuropathy, peripheral motor neuropathy, autonomic neuropathy or peripheral arterial disease. It is a major complication of diabetes mellitus, and it is a type of diabetic foot disease. Secondary complications to the ulcer, such as infection of the skin or subcutaneous tissue, bone infection, gangrene or sepsis are possible, often leading to amputation.

Total contact casting (TCC) is a specially designed cast designed to take weight off of the foot (off-loading) in patients with diabetic foot ulcers (DFUs). Reducing pressure on the wound by taking weight off the foot has proven to be very effective in DFU treatment. DFUs are a major factor leading to lower leg amputations among the diabetic population in the US with 85% of amputations in diabetics being preceded by a DFU. Furthermore, the five-year post-amputation mortality rate among diabetics is estimated at 45% for those with neuropathic DFUs.

Electrochemical skin conductance (ESC) is an objective, non-invasive and quantitative electrophysiological measure of skin conductance through the application of a pulsating direct current on the skin. It is based on reverse iontophoresis and steady chronoamperometry. ESC is intended to provide insight into and assess sudomotor function and small fiber peripheral neuropathy. The measure was principally developed by Impeto Medical to diagnose cystic fibrosis from historical research at the Mayo Clinic and then tested on others diseases with peripheral neuropathic alterations in general. It was later integrated into health connected scales by Withings.

<span class="mw-page-title-main">Diabetic foot infection</span> Medical condition

Diabetic foot infection is any infection of the foot in a diabetic person. The most frequent cause of hospitalization for diabetic patients is due to foot infections. Symptoms may include pus from a wound, redness, swelling, pain, warmth, tachycardia, or tachypnea. Complications can include infection of the bone, tissue death, amputation, or sepsis. They are common and occur equally frequently in males and females. Older people are more commonly affected.

Vijay Viswanathan is a diabetologist from India who is the chief diabetologist at M.V. Hospital for Diabetes based in Chennai. He is also the President of Prof. M. Viswanathan Diabetes Research Centre and the first Asian President of D-Foot International, a non-profit organization based in Belgium. Viswanathan has published over 543 research papers, in publications including the National Library of Medicine, on topics such as primary prevention and management of diabetes, diabetic foot and prevention of amputation, diabetic nephropathy, socio-economics of diabetes care and Pulmonary TB and diabetes.

Diabetes self-management refers to the ongoing process in which individuals with diabetes actively participate in managing their condition through lifestyle choices, medication adherence, blood glucose monitoring, and education, aimed at maintaining optimal blood sugar levels and preventing complications.

References

  1. Jalilian M, Ahmadi Sarbarzeh P, Oubari S (2020). "Factors Related to Severity of Diabetic Foot Ulcer: A Systematic Review". Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 13: 1835–42. doi: 10.2147/DMSO.S256243 . PMC   7259447 . PMID   32547145.
  2. Arts S, Kerselaers L, De Neve J, Vanlauwe J, Cornelis S, Aerden D (2022). "Foot surgery without anesthesia in diabetic patients with sensory neuropathy: A short series". Foot & Ankle Surgery: Techniques, Reports & Cases. 2 (1). Elsevier BV: 100128. doi: 10.1016/j.fastrc.2021.100128 . ISSN   2667-3967. S2CID   245659745.
  3. Chantelau EA (May 2021). "A Novel Diagnostic Test for End-Stage Sensory Failure Associated With Diabetic Foot Ulceration: Proof-of-Principle Study". J Diabetes Sci Technol. 15 (3): 622–9. doi: 10.1177/1932296819900256 . PMC   8111226 . PMID   31948277.
  4. Formosa C, Cassar K, Gatt A, Mizzi A, Mizzi S, Camileri KP, Azzopardi C, DeRaffaele C, Falzon O, Cristina S, Chockalingam N (November 2013). "Hidden dangers revealed by misdiagnosed peripheral arterial disease using ABPI measurement". Diabetes Res Clin Pract. 102 (2): 112–6. doi:10.1016/j.diabres.2013.10.006. PMID   24209599.
  5. International Working Group on the Diabetic Foot (2015). "Guidance on the diagnosis, prognosis and management of peripheral artery disease in patients with foot ulcers in diabetes" . Retrieved 23 November 2015.
  6. Schaper NC, Van Netten JJ, Apelqvist J, Lipsky BA, Bakker K (February 2017). "Prevention and management of foot problems in diabetes: A Summary Guidance for Daily Practice 2015, based on the IWGDF guidance documents" (PDF). Diabetes Res Clin Pract. 124: 84–92. doi:10.1016/j.diabres.2016.12.007. PMID   28119194.
  7. Danny Darlington CJ, Suresh Kumar S, Jagdish S, Sridhar MG (November 2019). "Evaluation of Serum Vitamin D Levels in Diabetic Foot Infections: A Cross-Sectional Study in a Tertiary Care Center in South India". Iran J Med Sci. 44 (6): 474–482. doi:10.30476/ijms.2018.44951. PMC   6885722 . PMID   31875082.
  8. Singh N, Armstrong DG, Lipsky BA (January 2005). "Preventing foot ulcers in patients with diabetes". JAMA. 293 (2): 217–28. doi: 10.1001/jama.293.2.217 . PMID   15644549.
  9. 1 2 Selva Olid A, Solà I, Barajas-Nava LA, Gianneo OD, Bonfill Cosp X, Lipsky BA (September 2015). "Systemic antibiotics for treating diabetic foot infections". Cochrane Database Syst Rev. 2015 (9): CD009061. doi:10.1002/14651858.CD009061.pub2. PMC   8504988 . PMID   26337865.
  10. Stiegler H (February 2004). "[Diabetic foot syndrome]". Herz (in German). 29 (1): 104–15. doi:10.1007/s00059-004-2534-z. PMID   14968346. S2CID   39360504.
  11. 1 2 Dorresteijn JAN, Kriegsman DMW, Assendelft WJJ, Valk GD (2014). "Patient education for preventing diabetic foot ulceration". Cochrane Database of Systematic Reviews. 2014 (12): CD001488. doi:10.1002/14651858.CD001488.pub5. hdl: 2066/108980 . PMC   7057029 . PMID   25514250.
  12. Formosa C, Gatt A, Chockalingam N (2016). "A Critical Evaluation of Existing Diabetic Foot Screening Guidelines". Rev Diabet Stud. 13 (2–3): 158–186. doi:10.1900/RDS.2016.13.158. PMC   5553765 . PMID   28012281.
  13. Arad Y, Fonseca V, Peters A, Vinik A (April 2011). "Beyond the monofilament for the insensate diabetic foot: a systematic review of randomized trials to prevent the occurrence of plantar foot ulcers in patients with diabetes". Diabetes Care. 34 (4): 1041–6. doi:10.2337/dc10-1666. PMC   3064020 . PMID   21447666.
  14. 1 2 "Simple tool identifies the people with diabetes most likely to develop foot ulcers". NIHR Evidence. National Institute for Health and Care Research. 2022-06-21. doi:10.3310/nihrevidence_51316. S2CID   251787297.
  15. Golledge J, Fernando ME, Alahakoon C, Lazzarini PA, Aan de Stegge WB, van Netten JJ, Bus SA (September 2022). "Efficacy of at home monitoring of foot temperature for risk reduction of diabetes-related foot ulcer: A meta-analysis". Diabetes Metab Res Rev. 38 (6): e3549. doi:10.1002/dmrr.3549. PMC   9541448 . PMID   35605998. S2CID   251981184.
  16. "Diabetic foot problems: prevention and management". National Institute for Health and Care Excellence (NICE). 26 August 2015. Retrieved 2022-09-06.
  17. Chappell FM, Crawford F, Horne M, Leese GP, Martin A, Weller D, et al. (May 2021). "Development and validation of a clinical prediction rule for development of diabetic foot ulceration: an analysis of data from five cohort studies". BMJ Open Diabetes Res Care. 9 (1): e002150. doi:10.1136/bmjdrc-2021-002150. PMC   8154962 . PMID   34035053.
  18. Jeon BJ, Choi HJ, Kang JS, Tak MS, Park ES (June 2017). "Comparison of five systems of classification of diabetic foot ulcers and predictive factors for amputation". Int Wound J. 14 (3): 537–545. doi:10.1111/iwj.12642. PMC   7949506 . PMID   27723246.
  19. Bader MS (July 2008). "Diabetic Foot Infection". American Family Physician. 78 (1): 71–79. PMID   18649613 . Retrieved 8 October 2020.
  20. Marson BA, Deshmukh SR, Grindlay DJ, Ollivere BJ, Scammell BE (November 2018). "A systematic review of local antibiotic devices used to improve wound healing following the surgical management of foot infections in diabetics". Bone Joint J. 100-B (11): 1409–15. doi:10.1302/0301-620X.100B11.BJJ-2018-0720. PMID   30418057. S2CID   53280854.