Clinical data | |
---|---|
Pronunciation | /ˌtaɪɡəˈsaɪkliːn/ |
Trade names | Tygacil |
AHFS/Drugs.com | Monograph |
MedlinePlus | a614002 |
License data |
|
Pregnancy category |
|
Routes of administration | Intravenous (IV) |
ATC code | |
Legal status | |
Legal status | |
Pharmacokinetic data | |
Protein binding | 71–89% |
Metabolism | Not metabolized |
Elimination half-life | 42.4 hours |
Excretion | 59% Bile duct, 33% kidney |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
DrugBank | |
ChemSpider | |
UNII | |
KEGG | |
ChEBI | |
ChEMBL | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.211.439 |
Chemical and physical data | |
Formula | C29H39N5O8 |
Molar mass | 585.658 g·mol−1 |
3D model (JSmol) | |
| |
| |
(verify) |
Tigecycline, sold under the brand name Tygacil, is a tetracycline antibiotic medication for a number of bacterial infections. [3] [6] [7] It is a glycylcycline class drug that is administered intravenously. It was developed in response to the growing rate of antibiotic resistant bacteria such as Staphylococcus aureus , Acinetobacter baumannii , and E. coli . [6] As a tetracycline derivative antibiotic, its structural modifications has expanded its therapeutic activity to include Gram-positive and Gram-negative organisms, including those of multi-drug resistance.
It was given a U.S. Food and Drug Administration (FDA) fast-track approval and was approved on 17 June 2005. [6] [7] It was approved for medical use in the European Union in April 2006. [4]
It was removed from the World Health Organization's List of Essential Medicines in 2019. [8] [9] The World Health Organization classifies tigecycline as critically important for human medicine. [10]
Tigecycline is used to treat different kinds of bacterial infections, including complicated skin and structure infections, complicated intra-abdominal infections and community-acquired bacterial pneumonia.[ citation needed ] Tigecycline is a glycylcycline antibiotic that covers MRSA and Gram-negative organisms:
Tigecycline is given intravenously and has activity against a variety of Gram-positive and Gram-negative bacterial pathogens, many of which are resistant to existing antibiotics. Tigecycline successfully completed phase III trials in which it was at least equal to intravenous vancomycin and aztreonam to treat complicated skin and skin structure infections, and to intravenous imipenem and cilastatian to treat complicated intra-abdominal infections. [12] Tigecycline is active against many Gram-positive bacteria, Gram-negative bacteria and anaerobes – including activity against methicillin-resistant Staphylococcus aureus (MRSA), Stenotrophomonas maltophilia , Haemophilus influenzae, and Neisseria gonorrhoeae (with MIC values reported at 2 μg/mL) and multi-drug resistant strains of Acinetobacter baumannii . It has no activity against Pseudomonas spp. or Proteus spp. The drug is licensed for the treatment of skin and soft tissue infections as well as intra-abdominal infections.[ citation needed ]
"Tigecycline is also active against Clostridioides difficile strains. Most C. difficile isolates have MICs <0.25 for tigecycline [13] The European Society of Clinical Microbiology and Infection recommends tigecycline as a potential salvage therapy for severe and/or complicated or refractory Clostridoides difficile infection. [14]
Tigecycline can also be used in vulnerable populations such as immunocompromised patients or patients with cancer. [14]
It is well established that tigecycline works as an effective antibiotic, however, it may have other properties that are not yet fully understood. [15] Minocycline has been shown to have anti-inflammatory and anti-apoptotic activities, inhibition of proteolysis and suppression of angiogenesis and tumor metastasis. [15] This is a feature not unique to minocycline, with many tetracyclines exhibiting non-antibiotic clinical benefits. [16] [17] Tigecycline has shown in vitro and in vivo activity against acute myeloid leukemia. The antileukemic activity of tigecycline can be attributed to the inhibition of mitochondrial protein translation in eukaryotic cells. Leukemic cells have an increased dependence on mitochondrial function, causing a heightened sensitivity to tigecycline. [18] Tigecycline has also shown anti-cancer properties against several other kinds of tumors, including non-small cell lung cancer, gastric cancer, hepatocellular carcinoma, and glioblastoma. [19] It also shows good activity against the causative agent of pythiosis. [20]
Tigecycline targets both Gram-positive and Gram-negative bacteria including a few key multi-drug resistant pathogens. The following represents MIC susceptibility data for a few medically significant bacterial pathogens.
Tigecycline generally has poor activity against most strains of Pseudomonas. [22]
Tigecycline does not require dose adjustment for people with mild to moderate liver problems. However, in people with severe liver problems dosing should be decreased and closely monitored. [11]
Tigecycline does not require dose changes in people with poor kidney function or having hemodialysis. [11]
Bacterial resistance towards tigecycline in Enterobacteriaceae (such as E. coli) is often caused by genetic mutations leading to an up-regulation of bacterial efflux pumps, such as the RND type efflux pump AcrAB. Some bacterial species such as Pseudomonas spp. can be naturally resistant to tigecycline through the constant over-expression of such efflux pumps. In some Enterobacteriaceae species, mutations in ribosomal genes such as rpsJ have been found to cause resistance to tigecycline. [23]
As a tetracycline derivative, tigecycline exhibits similar side effects to the class of antibiotics. Gastrointestinal (GI) symptoms are the most common reported side effect. [14]
Common side effects of tigecycline include nausea and vomiting. [24] Nausea (26%) and vomiting (18%) tend to be mild or moderate and usually occur during the first two days of therapy. [3]
Rare adverse effects (<2%) include: swelling, pain, and irritation at injection site, anorexia, jaundice, hepatic dysfunction, pruritus, acute pancreatitis, and increased prothrombin time. [3]
Precaution is needed when taken in individuals with tetracycline hypersensitivity, pregnant women, and children. It has been found to cause fetal harm when administered during pregnancy and therefore is classified as pregnancy category D. [11] In rats or rabbits, tigecycline crossed the placenta and was found in the fetal tissues, and is associated with slightly lower birth weights as well as slower bone ossification. Even though it was not considered teratogenic, tigecycline should be avoided unless benefits outweigh the risks. [3] In addition, its use during childhood can cause yellow-grey-brown discoloration of the teeth and should not be used unless necessary.[ citation needed ]
More so, there are clinical reports of tigecycline-induced acute pancreatitis, with particular relevance to patients also diagnosed with cystic fibrosis. [25]
Tigecycline showed an increased mortality in patients treated for hospital-acquired pneumonia, especially ventilator-associated pneumonia (a non-approved use), but also in patients with complicated skin and skin structure infections, complicated intra-abdominal infections and diabetic foot infection. [3] Increased mortality was in comparison to other treatment of the same types of infections. The difference was not statistically significant for any type, but mortality was numerically greater for every infection type with Tigecycline treatment, and thus prompted a black box warning by the FDA. [26] [27]
The FDA issued a black box warning in September 2010, for tigecycline regarding an increased risk of death compared to other appropriate treatment. [26] [3] [28] As a result of increase in total death rate (cause is unknown) in individuals taking this drug, tigecycline is reserved for situations in which alternative treatment is not suitable. [11] [28] The FDA updated the black box warning in 2013. [27]
Tigecycline has been found to interact with medications, such as:
However, the mechanism behind these drug interactions have not been fully analyzed. [3]
Minocycline was a commonly used tetracycline synthesized in Lederle Laboratories in 1970, but antibiotic resistance to the drug began growing in prevalence throughout the 70's and 80's. [30] [31] While the problem of antibiotic resistance was known to scientists during the 1980s, apathy led to little federal attention given to the emerging crisis. However, by the late 1980s the worldwide threat began to be treated more seriously, which led to the renewed funding of antibiotic research. [32]
In 1993, researchers in the same laboratories that first synthesized minocycline created a new generation of tetracycline antibacterial agents, known as the glycylcyclines. These antibiotics were the first new drugs of the tetracycline class to be reported since the discovery of minocycline in 1970. [33] The glycylcyclines were found to be active against a broad spectrum of tetracycline susceptible and resistant Gram (-) and Gram (+) aerobic and anaerobic bacteria. This initial research resulted in numerous studies being done on the antibacterial activity of various glycylcyclines, with extra focus being put on N,N-dimethylglycyl-amino derivatives, due to their reported potency. [34] [35] The aforementioned research culminated in a 1999 paper describing the discovery of a compound known as GAR-936, which would later be known as Tigecycline. [36]
Tigecycline is a broad-spectrum antibiotic that acts as a protein synthesis inhibitor. It exhibits bacteriostatic activity by binding to the 30S ribosomal subunit of bacteria and thereby blocking the interaction of aminoacyl-tRNA with the A site of the ribosome. [37] In addition, tigecycline has demonstrated bactericidal activity against isolates of S. pneumoniae and L. pneumophila. [3]
Studies have shown that tigecycline binds to the 70S ribosome with 5 fold and >100 fold greater affinity than minocycline and tetracycline, respectively . [38] As previously mentioned, tigecycline still binds to the A site of the 30S ribosomal subunit, however the binding of the novel antibiotic involves substantial interactions with residues of helix H34 of that same subunit. These interactions are not observed in the binding of tetracycline. [39] The findings indicate that tigecycline likely has a unique mechanism of action that prevents inhibition from ribosomal protection. [38]
It is a third-generation tetracycline derivative within a class called glycylcyclines which carry a N,N-dimethyglycylamido (DMG) moiety attached to the 9-position of tetracycline ring D. [40] With structural modifications as a 9-DMG derivative of minocycline, tigecycline has been found to improve minimal inhibitory concentrations against Gram-negative and Gram-positive organisms, when compared to tetracyclines. [40]
Tigecycline is metabolized through glucuronidation into glucuronide conjugates and a N-acetyl-9-aminominocycline metabolite. [41] Therefore, dose adjustments are needed for patients with severe hepatic impairment. [3] More so, it is primarily eliminated unchanged in the feces and secondarily eliminated by the kidneys. [41] No renal adjustments are necessary.
It is approved to treat complicated skin and soft tissue infections (cSSTI), complicated intra-abdominal infections (cIAI), and community-acquired bacterial pneumonia (CAP) in individuals 18 years and older. [6] [7] [41] [3] In the United Kingdom it is approved in adults and in children from the age of eight years for the treatment of complicated skin and soft tissue infections (excluding diabetic foot infections) and complicated intra-abdominal infections in situations where other alternative antibiotics are not suitable. [42]
An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting bacterial infections, and antibiotic medications are widely used in the treatment and prevention of such infections. They may either kill or inhibit the growth of bacteria. A limited number of antibiotics also possess antiprotozoal activity. Antibiotics are not effective against viruses such as the ones which cause the common cold or influenza. Drugs which inhibit growth of viruses are termed antiviral drugs or antivirals. Antibiotics are also not effective against fungi. Drugs which inhibit growth of fungi are called antifungal drugs.
Tetracycline, sold under various brand names, is an oral antibiotic in the tetracyclines family of medications, used to treat a number of infections, including acne, cholera, brucellosis, plague, malaria, and syphilis.
Ertapenem, sold under the brand name Invanz, is a carbapenem antibiotic medication used for the treatment of infections of the abdomen, the lungs, the upper part of the female reproductive system, and the diabetic foot.
Levofloxacin, sold under the brand name Levaquin among others, is a broad-spectrum antibiotic of the fluoroquinolone drug class. It is the left-handed isomer of the medication ofloxacin. It is used to treat a number of bacterial infections including acute bacterial sinusitis, pneumonia, H. pylori, urinary tract infections, Legionnaires' disease, chronic bacterial prostatitis, and some types of gastroenteritis. Along with other antibiotics it may be used to treat tuberculosis, meningitis, or pelvic inflammatory disease. It is available by mouth, intravenously, and in eye drop form.
Carbapenems are a class of very effective antibiotic agents most commonly used for treatment of severe bacterial infections. This class of antibiotics is usually reserved for known or suspected multidrug-resistant (MDR) bacterial infections. Similar to penicillins and cephalosporins, carbapenems are members of the beta-lactam antibiotics drug class, which kill bacteria by binding to penicillin-binding proteins, thus inhibiting bacterial cell wall synthesis. However, these agents individually exhibit a broader spectrum of activity compared to most cephalosporins and penicillins. Furthermore, carbapenems are typically unaffected by emerging antibiotic resistance, even to other beta-lactams.
Cefotaxime is an antibiotic used to treat several bacterial infections in humans, other animals, and plant tissue culture. Specifically in humans it is used to treat joint infections, pelvic inflammatory disease, meningitis, pneumonia, urinary tract infections, sepsis, gonorrhea, and cellulitis. It is given either by injection into a vein or muscle.
Imipenem is a synthetic β-lactam antibiotic belonging to the carbapenems chemical class. developed by Merck scientists Burton Christensen, William Leanza, and Kenneth Wildonger in the mid-1970s. Carbapenems are highly resistant to the β-lactamase enzymes produced by many multiple drug-resistant Gram-negative bacteria, thus playing a key role in the treatment of infections not readily treated with other antibiotics. It is usually administered through intravenous injection.
Ampicillin/sulbactam is a fixed-dose combination medication of the common penicillin-derived antibiotic ampicillin and sulbactam, an inhibitor of bacterial beta-lactamase. Two different forms of the drug exist. The first, developed in 1987 and marketed in the United States under the brand name Unasyn, generic only outside the United States, is an intravenous antibiotic. The second, an oral form called sultamicillin, is marketed under the brand name Ampictam outside the United States, and generic only in the United States. Ampicillin/sulbactam is used to treat infections caused by bacteria resistant to beta-lactam antibiotics. Sulbactam blocks the enzyme which breaks down ampicillin and thereby allows ampicillin to attack and kill the bacteria.
Glycylcyclines are a class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance, namely resistance mediated by acquired efflux pumps and/or ribosomal protection. Presently, tigecycline is the only glycylcycline approved for antibiotic use.
Tetracyclines are a group of broad-spectrum antibiotic compounds that have a common basic structure and are either isolated directly from several species of Streptomyces bacteria or produced semi-synthetically from those isolated compounds. Tetracycline molecules comprise a linear fused tetracyclic nucleus to which a variety of functional groups are attached. Tetracyclines are named after their four ("tetra-") hydrocarbon rings ("-cycl-") derivation ("-ine"). They are defined as a subclass of polyketides, having an octahydrotetracene-2-carboxamide skeleton and are known as derivatives of polycyclic naphthacene carboxamide. While all tetracyclines have a common structure, they differ from each other by the presence of chloro, methyl, and hydroxyl groups. These modifications do not change their broad antibacterial activity, but do affect pharmacological properties such as half-life and binding to proteins in serum.
Cefditoren, also known as cefditoren pivoxil is an antibiotic used to treat infections caused by Gram-positive and Gram-negative bacteria that are resistant to other antibiotics. It is mainly used for treatment of community acquired pneumonia. It is taken by mouth and is in the cephalosporin family of antibiotics, which is part of the broader beta-lactam group of antibiotics.
Tedizolid, sold under the brand name Sivextro is an oxazolidinone-class antibiotic. Tedizolid phosphate is a phosphate ester prodrug of the active compound tedizolid. It was developed by Cubist Pharmaceuticals, following acquisition of Trius Therapeutics, and is marketed for the treatment of acute bacterial skin and skin structure infections.
Ceftaroline fosamil (INN), brand name Teflaro in the US and Zinforo in Europe, is a cephalosporin antibiotic with anti-MRSA activity. Ceftaroline fosamil is a prodrug of ceftaroline. It is active against methicillin-resistant Staphylococcus aureus (MRSA) and other Gram-positive bacteria. It retains some activity of later-generation cephalosporins having broad-spectrum activity against Gram-negative bacteria, but its effectiveness is relatively much weaker. It is currently being investigated for community-acquired pneumonia and complicated skin and skin structure infection.
Avibactam is a non-β-lactam β-lactamase inhibitor developed by Actavis jointly with AstraZeneca. A new drug application for avibactam in combination with ceftazidime was approved by the FDA on February 25, 2015, for treating complicated urinary tract (cUTI) and complicated intra-abdominal infections (cIAI) caused by antibiotic resistant-pathogens, including those caused by multi-drug resistant Gram-negative bacterial pathogens.
Omadacycline, sold under the brand name Nuzyra, is a broad spectrum antibiotic medication belonging to the aminomethylcycline subclass of tetracycline antibiotics. In the United States, it was approved in October 2018, for the treatment of community-acquired bacterial pneumonia and acute skin and skin structure infections.
Eravacycline is a synthetic halogenated tetracycline class antibiotic by Tetraphase Pharmaceuticals. It is closely related to tigecycline. It has a broad spectrum of activity including many multi-drug resistant strains of bacteria. Phase III studies in complicated intra-abdominal infections (cIAI) and complicated urinary tract infections (cUTI) were recently completed with mixed results. Eravacycline was granted fast track designation by the FDA and is currently available in USA.
Ceftolozane/tazobactam, sold under the brand name Zerbaxa, is a fixed-dose combination antibiotic medication used for the treatment of complicated urinary tract infections and complicated intra-abdominal infections in adults. Ceftolozane is a cephalosporin antibiotic, developed for the treatment of infections with gram-negative bacteria that are resistant to conventional antibiotics. It was studied for urinary tract infections, intra-abdominal infections and ventilator-associated bacterial pneumonia.
Ceftazidime/avibactam, sold under the brand name Avycaz among others, is a fixed-dose combination medication composed of ceftazidime, a cephalosporin antibiotic, and avibactam, a β-lactamase inhibitor. It is used to treat complicated intra-abdominal infections, urinary tract infections, and pneumonia. It is only recommended when other options are not appropriate. It is given by infusion into a vein.
Cefiderocol, sold under the brand name Fetroja among others, is an antibiotic used to treat complicated urinary tract infections when no other options are available. It is indicated for the treatment of multi-drug-resistant Gram-negative bacteria including Pseudomonas aeruginosa. It is given by injection into a vein.
Imipenem/cilastatin/relebactam, sold under the brand name Recarbrio, is a fixed-dose combination medication used as an antibiotic. In 2019, it was approved for use in the United States for the treatment of complicated urinary tract and complicated intra-abdominal infections. It is administered via intravenous injection.