Micronomicin

Last updated
Micronomicin
Micronomicin.svg
Clinical data
Other names(2R,3R,4R,5R)-2-[(1S,2S,4S,6R)-4,6-diamino-3-[(2R,3R,6S)-3-amino-6-(methylaminomethyl)oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-methylaminooxane-3,5-diol
AHFS/Drugs.com International Drug Names
Routes of
administration
Eye drops, IV
ATC code
Legal status
Legal status
  • In general: ℞ (Prescription only)
Identifiers
  • (1R,2S,3S,4R,6S)-4,6-diamino-3-{[3-deoxy-4-C-methyl-3-(methylamino)-β-L-arabinopyranosyl]oxy}-2-hydroxycyclohexyl 2-amino-2,3,4,6-tetradeoxy-6-(methylamino)-α-D-erythro-hexopyranoside
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
Chemical and physical data
Formula C20H41N5O7
Molar mass 463.576 g·mol−1
3D model (JSmol)
Melting point 260 °C (500 °F) (dec.)
  • C[C@@]1(CO[C@@H]([C@@H]([C@H]1NC)O)O[C@H]2[C@@H](C[C@@H](C([C@@H]2O)O[C@@H]3[C@@H](CC[C@H](O3)CNC)N)N)N)O
  • InChI=1S/C20H41N5O7/c1-20(28)8-29-19(14(27)17(20)25-3)32-16-12(23)6-11(22)15(13(16)26)31-18-10(21)5-4-9(30-18)7-24-2/h9-19,24-28H,4-8,21-23H2,1-3H3/t9-,10+,11-,12+,13-,14+,15+,16-,17+,18+,19+,20-/m0/s1
  • Key:DNYGXMICFMACRA-XHEDQWPISA-N
   (verify)

Micronomicin (INN) is an aminoglycoside antibiotic for use on the eye. [1] [2]

Related Research Articles

<span class="mw-page-title-main">Neomycin</span> Type of antibiotic

Neomycin is an aminoglycoside antibiotic that displays bactericidal activity against gram-negative aerobic bacilli and some anaerobic bacilli where resistance has not yet arisen. It is generally not effective against gram-positive bacilli and anaerobic gram-negative bacilli. Neomycin comes in oral and topical formulations, including creams, ointments, and eyedrops. Neomycin belongs to the aminoglycoside class of antibiotics that contain two or more amino sugars connected by glycosidic bonds.

<span class="mw-page-title-main">Gentamicin</span> Antibiotic medication

Gentamicin is an antibiotic used to treat several types of bacterial infections. This may include bone infections, endocarditis, pelvic inflammatory disease, meningitis, pneumonia, urinary tract infections, and sepsis among others. It is not effective for gonorrhea or chlamydia infections. It can be given intravenously, by intramuscular injection, or topically. Topical formulations may be used in burns or for infections of the outside of the eye. It is often only used for two days until bacterial cultures determine what specific antibiotics the infection is sensitive to. The dose required should be monitored by blood testing.

<span class="mw-page-title-main">Aminoglycoside</span> Antibacterial drug

Aminoglycoside is a medicinal and bacteriologic category of traditional Gram-negative antibacterial medications that inhibit protein synthesis and contain as a portion of the molecule an amino-modified glycoside (sugar). The term can also refer more generally to any organic molecule that contains amino sugar substructures. Aminoglycoside antibiotics display bactericidal activity against Gram-negative aerobes and some anaerobic bacilli where resistance has not yet arisen but generally not against Gram-positive and anaerobic Gram-negative bacteria.

<span class="mw-page-title-main">Pyelonephritis</span> Medical condition

Pyelonephritis is inflammation of the kidney, typically due to a bacterial infection. Symptoms most often include fever and flank tenderness. Other symptoms may include nausea, burning with urination, and frequent urination. Complications may include pus around the kidney, sepsis, or kidney failure.

<span class="mw-page-title-main">Amikacin</span> Antibiotic medication

Amikacin is an antibiotic medication used for a number of bacterial infections. This includes joint infections, intra-abdominal infections, meningitis, pneumonia, sepsis, and urinary tract infections. It is also used for the treatment of multidrug-resistant tuberculosis. It is used by injection into a vein using an IV or into a muscle.

<span class="mw-page-title-main">Netilmicin</span> Chemical compound

Netilmicin (1-N-ethylsisomicin) is a semisynthetic aminoglycoside antibiotic, and a derivative of sisomicin, produced by Micromonospora inyoensis. Aminoglycoside antibiotics have the ability to kill a wide variety of bacteria. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin.

Antimicrobial pharmacodynamics is the relationship between the concentration of an antibiotic and its ability to inhibit vital processes of endo- or ectoparasites and microbial organisms. This branch of pharmacodynamics relates the concentration of an anti-infective agent to its effect, specifically to its antimicrobial effect.

In enzymology, a gentamicin 3'-N-acetyltransferase (EC 2.3.1.60) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Kanamycin kinase</span>

Aminoglycoside-3'-phosphotransferase, also known as aminoglycoside kinase, is an enzyme that primarily catalyzes the addition of phosphate from ATP to the 3'-hydroxyl group of a 4,6-disubstituted aminoglycoside, such as kanamycin. However, APH(3') has also been found to phosphorylate at the 5'-hydroxyl group in 4,5-disubstituted aminoglycosides, which lack a 3'-hydroxyl group, and to diphosphorylate hydroxyl groups in aminoglycosides that have both 3'- and 5'-hydroxyl groups. Primarily positively charged at biological conditions, aminoglycosides bind to the negatively charged backbone of nucleic acids to disrupt protein synthesis, effectively inhibiting bacterial cell growth. APH(3') mediated phosphorylation of aminoglycosides effectively disrupts their mechanism of action, introducing a phosphate group that reduces their binding affinity due to steric hindrances and unfavorable electrostatic interactions. APH(3') is primarily found in certain species of gram-positive bacteria.

<span class="mw-page-title-main">Sisomicin</span> Chemical compound

Sisomicin, is an aminoglycoside antibiotic, isolated from the fermentation broth of Micromonospora inositola. It is a newer broad-spectrum aminoglycoside most structurally related to gentamicin.

<span class="mw-page-title-main">Ribostamycin</span> Aminoglycoside antibiotic

Ribostamycin is an aminoglycoside-aminocyclitol antibiotic isolated from a streptomycete, Streptomyces ribosidificus, originally identified in a soil sample from Tsu City of Mie Prefecture in Japan. It is made up of 3 ring subunits: 2-deoxystreptamine (DOS), neosamine C, and ribose. Ribostamycin, along with other aminoglycosides with the DOS subunit, is an important broad-spectrum antibiotic with important use against human immunodeficiency virus and is considered a critically important antimicrobial by the World Health Organization., Resistance against aminoglycoside antibiotics, such as ribostamycin, is a growing concern. The resistant bacteria contain enzymes that modify the structure through phosphorylation, adenylation, and acetylation and prevent the antibiotic from being able to interact with the bacterial ribosomal RNAs.

<span class="mw-page-title-main">Dibekacin</span> Chemical compound

Dibekacin is an aminoglycoside antibiotic. It is a semisynthetic derivative of kanamycin developed by Hamao Umezawa and collaborators for Meiji Seika.

<span class="mw-page-title-main">Protein synthesis inhibitor</span> Inhibitors of translation

A protein synthesis inhibitor is a compound that stops or slows the growth or proliferation of cells by disrupting the processes that lead directly to the generation of new proteins.

<span class="mw-page-title-main">Astromicin</span> Chemical compound

Astromicin is an aminoglycoside antibiotic. It is produce by Micromonospora olivasterospora.

<span class="mw-page-title-main">Arbekacin</span> Antibiotic

Arbekacin (INN) is a semisynthetic aminoglycoside antibiotic which was derived from kanamycin. It is primarily used for the treatment of infections caused by multi-resistant bacteria including methicillin-resistant Staphylococcus aureus (MRSA). Arbekacin was originally synthesized from dibekacin in 1973 by Hamao Umezawa and collaborators. It has been registered and marketed in Japan since 1990 under the trade name Habekacin. Arbekacin is no longer covered by patent and generic versions of the drug are also available under such trade names as Decontasin and Blubatosine.

<span class="mw-page-title-main">Plasmid-mediated resistance</span> Antibiotic resistance caused by a plasmid

Plasmid-mediated resistance is the transfer of antibiotic resistance genes which are carried on plasmids. Plasmids possess mechanisms that ensure their independent replication as well as those that regulate their replication number and guarantee stable inheritance during cell division. By the conjugation process, they can stimulate lateral transfer between bacteria from various genera and kingdoms. Numerous plasmids contain addiction-inducing systems that are typically based on toxin-antitoxin factors and capable of killing daughter cells that don't inherit the plasmid during cell division. Plasmids often carry multiple antibiotic resistance genes, contributing to the spread of multidrug-resistance (MDR). Antibiotic resistance mediated by MDR plasmids severely limits the treatment options for the infections caused by Gram-negative bacteria, especially family Enterobacteriaceae. The global spread of MDR plasmids has been enhanced by selective pressure from antimicrobial medications used in medical facilities and when raising animals for food.

16S rRNA (guanine1405-N7)-methyltransferase (EC 2.1.1.179, methyltransferase Sgm, m7G1405 Mtase, Sgm Mtase, Sgm, sisomicin-gentamicin methyltransferase, sisomicin-gentamicin methylase, GrmA, RmtB, RmtC, ArmA) is an enzyme with systematic name S-adenosyl-L-methionine:16S rRNA (guanine1405-N7)-methyltransferase. This enzyme catalyses the following chemical reaction

2-deoxy-scyllo-Inosose synthase is an enzyme with systematic name D-glucose-6-phosphate phosphate-lyase (2-deoxy-scyllo-inosose-forming). This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Totomycin</span> Chemical compound

Hygromycin A is a modified cinnamic acid flanked by a furanose sugar and aminocyclitol. It is produced by Streptomyces hygroscopicus, first described in the 1950s.

References

  1. Odakura Y, Kase H, Nakayama K (February 1983). "Sagamicin and the related aminoglycosides: fermentation and biosynthesis. III. Isolation and characterization of Micromonospora sagamiensis mutants blocked in gentamicin C1 pathway". The Journal of Antibiotics. 36 (2): 125–30. doi: 10.7164/antibiotics.36.125 . PMID   6833127.
  2. Fukuda M, Sasaki K (April 2002). "[Antibiotic ophthalmic solutions evaluated by pharmacokinetic parameters of maximum concentration in the aqueous]". Nippon Ganka Gakkai Zasshi. 106 (4): 195–200. PMID   11979978.