Oxepanoprolinamide

Last updated
Chemical structure of iboxamycin Iboxamycin.svg
Chemical structure of iboxamycin

Oxepanoprolinamides are a class of antibiotics. They include iboxamycin. [1] These drugs are fully synthetic. The molecules contain the aminooctose component of clindamycin. They were developed by Andrew G. Myers and Yury S. Polikanov. [1] The structure contains an oxepane (a seven-membered ring compound with oxygen) and a proline, with an amide group that increases rigidity. [2]

Oxepanoprolinamides function by insertion into bacterial ribosomes. They overcome a type of antibiotic resistance to clindamycin based on Erm and Cfr ribosomal RNA methyltransferase enzymes. [1] [3] [4]

Related Research Articles

<span class="mw-page-title-main">Antibiotic</span> Antimicrobial substance active against bacteria

An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting bacterial infections, and antibiotic medications are widely used in the treatment and prevention of such infections. They may either kill or inhibit the growth of bacteria. A limited number of antibiotics also possess antiprotozoal activity. Antibiotics are not effective against viruses such as the common cold or influenza; drugs which inhibit growth of viruses are termed antiviral drugs or antivirals rather than antibiotics. They are also not effective against fungi; drugs which inhibit growth of fungi are called antifungal drugs.

<span class="mw-page-title-main">Antimicrobial resistance</span> Ability of a microbe to resist the effects of medication

Antimicrobial resistance (AMR) occurs when microbes evolve mechanisms that protect them from the effects of antimicrobials. All classes of microbes can evolve resistance. Fungi evolve antifungal resistance. Viruses evolve antiviral resistance. Protozoa evolve antiprotozoal resistance, and bacteria evolve antibiotic resistance. Bacteria that are considered extensively drug resistant (XDR) or totally drug-resistant (TDR) are sometimes referred to as a superbug. Although antimicrobial resistance is a naturally-occurring process, it is often the result of improper usage of the drugs and management of the infections.

<span class="mw-page-title-main">Bacteriophage</span> Virus that infects and replicates within bacteria

A bacteriophage, also known informally as a phage, is a duplodnaviria virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν, meaning "to devour". Bacteriophages are composed of proteins that encapsulate a DNA or RNA genome, and may have structures that are either simple or elaborate. Their genomes may encode as few as four genes and as many as hundreds of genes. Phages replicate within the bacterium following the injection of their genome into its cytoplasm.

<span class="mw-page-title-main">Horizontal gene transfer</span> Type of nonhereditary genetic change

Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between unicellular and/or multicellular organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). HGT is an important factor in the evolution of many organisms. HGT is influencing scientific understanding of higher order evolution while more significantly shifting perspectives on bacterial evolution.

<span class="mw-page-title-main">Clindamycin</span> Antibiotic

Clindamycin is an antibiotic medication used for the treatment of a number of bacterial infections, including osteomyelitis (bone) or joint infections, pelvic inflammatory disease, strep throat, pneumonia, acute otitis media, and endocarditis. It can also be used to treat acne, and some cases of methicillin-resistant Staphylococcus aureus (MRSA). In combination with quinine, it can be used to treat malaria. It is available by mouth, by injection into a vein, and as a cream or a gel to be applied to the skin or in the vagina.

<span class="mw-page-title-main">Rifampicin</span> Antibiotic medication

Rifampicin, also known as rifampin, is an ansamycin antibiotic used to treat several types of bacterial infections, including tuberculosis (TB), Mycobacterium avium complex, leprosy, and Legionnaires’ disease. It is almost always used together with other antibiotics with two notable exceptions: when given as a "preferred treatment that is strongly recommended" for latent TB infection; and when used as post-exposure prophylaxis to prevent Haemophilus influenzae type b and meningococcal disease in people who have been exposed to those bacteria. Before treating a person for a long period of time, measurements of liver enzymes and blood counts are recommended. Rifampicin may be given either by mouth or intravenously.

<i>Pseudomonas aeruginosa</i> Species of bacterium

Pseudomonas aeruginosa is a common encapsulated, gram-negative, aerobic–facultatively anaerobic, rod-shaped bacterium that can cause disease in plants and animals, including humans. A species of considerable medical importance, P. aeruginosa is a multidrug resistant pathogen recognized for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its association with serious illnesses – hospital-acquired infections such as ventilator-associated pneumonia and various sepsis syndromes.

<i>Enterococcus faecalis</i> Species of bacterium

Enterococcus faecalis – formerly classified as part of the group D Streptococcus system – is a Gram-positive, commensal bacterium inhabiting the gastrointestinal tracts of humans. Like other species in the genus Enterococcus, E. faecalis is found in healthy humans and can be used as a probiotic. The probiotic strains such as Symbioflor1 and EF-2001 are characterized by the lack of specific genes related to drug resistance and pathogenesis. As an opportunistic pathogen, E. faecalis can cause life-threatening infections, especially in the nosocomial (hospital) environment, where the naturally high levels of antibiotic resistance found in E. faecalis contribute to its pathogenicity. E. faecalis has been frequently found in reinfected, root canal-treated teeth in prevalence values ranging from 30% to 90% of the cases. Re-infected root canal-treated teeth are about nine times more likely to harbor E. faecalis than cases of primary infections.

<span class="mw-page-title-main">Antibiotic sensitivity testing</span> Microbiology test used in medicine

Antibiotic sensitivity testing or antibiotic susceptibility testing is the measurement of the susceptibility of bacteria to antibiotics. It is used because bacteria may have resistance to some antibiotics. Sensitivity testing results can allow a clinician to change the choice of antibiotics from empiric therapy, which is when an antibiotic is selected based on clinical suspicion about the site of an infection and common causative bacteria, to directed therapy, in which the choice of antibiotic is based on knowledge of the organism and its sensitivities.

<span class="mw-page-title-main">Lincosamides</span> Group of antibiotics

Lincosamides are a class of antibiotics, which include lincomycin, clindamycin, and pirlimycin.

Levilactobacillus brevis is a gram-positive, rod shaped species of lactic acid bacteria which is heterofermentative, creating CO2, lactic acid and acetic acid or ethanol during fermentation. L. brevis is the type species of the genus Levilactobacillus (previously L. brevis group), which comprises 24 species (http://www.lactobacillus.ualberta.ca/, http://www.lactobacillus.uantwerpen.be/). It can be found in many different environments, such as fermented foods, and as normal microbiota. L.brevis is found in food such as sauerkraut and pickles. It is also one of the most common causes of beer spoilage. Ingestion has been shown to improve human immune function, and it has been patented several times. Normal gut microbiota L.brevis is found in human intestines, vagina, and feces.

<i>Acinetobacter baumannii</i> Species of bacterium

Acinetobacter baumannii is a typically short, almost round, rod-shaped (coccobacillus) Gram-negative bacterium. It is named after the bacteriologist Paul Baumann. It can be an opportunistic pathogen in humans, affecting people with compromised immune systems, and is becoming increasingly important as a hospital-derived (nosocomial) infection. While other species of the genus Acinetobacter are often found in soil samples, it is almost exclusively isolated from hospital environments. Although occasionally it has been found in environmental soil and water samples, its natural habitat is still not known.

<span class="mw-page-title-main">James Collins (bioengineer)</span>

James J. Collins is an American bioengineer, and the Termeer Professor of Medical Engineering & Science and Professor of Biological Engineering at MIT.

<span class="mw-page-title-main">Chronic bacterial prostatitis</span> Bacterial infection of the prostate gland

Chronic bacterial prostatitis is a bacterial infection of the prostate gland. It should be distinguished from other forms of prostatitis such as acute bacterial prostatitis and chronic pelvic pain syndrome (CPPS).

<span class="mw-page-title-main">Solithromycin</span> Chemical compound

Solithromycin is a ketolide antibiotic undergoing clinical development for the treatment of community-acquired pneumonia and other infections.

<span class="mw-page-title-main">MCR-1</span>

The mobilized colistin resistance (mcr) gene confers plasmid-mediated resistance to colistin, one of a number of last-resort antibiotics for treating Gram-negative infections. mcr-1, the original variant, is capable of horizontal transfer between different strains of a bacterial species. After discovery in November 2015 in E. coli from a pig in China it has been found in Escherichia coli, Salmonella enterica, Klebsiella pneumoniae, Enterobacter aerogenes, and Enterobacter cloacae. As of 2017, it has been detected in more than 30 countries on 5 continents in less than a year.

Structurally nanoengineered antimicrobial polypeptide polymers (SNAPPs) are a type of artificially designed synthetic antimicrobial peptide. The development of the polymers is potentially a treatment for bacterial diseases. The research takes a novel approach to combating bacteria; rather than poisoning them as antibiotics do, SNAPPs and other antimicrobial peptides tear the bacteria apart.

<span class="mw-page-title-main">Arylomycin</span> Group of chemical compounds

The arylomycins are a class of antibiotics initially isolated from a soil sample obtained in Cape Coast, Ghana. In this initial isolation, two families of closely related arylomycins, A and B, were identified. The family of glycosylated arylomycin C lipopeptides were subsequently isolated from a Streptomyces culture in a screen for inhibitors of bacterial signal peptidase. The initially isolated arylomycins have a limited spectrum of activity against Gram-positive bacteria, including Staphylococcus aureus and Streptococcus pneumoniae. The only activity against Gram-negative bacteria was seen in strains with a compromised outer membrane.

<span class="mw-page-title-main">Csaba Pal</span> Hungarian biologist (born 1975)

Csaba Pal is a Hungarian biologist at the Biological Research Centre (BRC) in Szeged Hungary. His laboratory is part of the Synthetic and Systems Biology Unit at BRC. His research is at the interface of evolution, antibiotic resistance and genome engineering and has published over 70 scientific publications in these areas.

References

  1. 1 2 3 Halford, Bethany (28 October 2021). "New class of synthetic antibiotics battle drug-resistant bacteria". Chemical & Engineering News. 99 (40).
  2. Mitcheltree, Matthew J.; Pisipati, Amarnath; Syroegin, Egor A.; Silvestre, Katherine J.; Klepacki, Dorota; Mason, Jeremy D.; Terwilliger, Daniel W.; Testolin, Giambattista; Pote, Aditya R.; Wu, Kelvin J. Y.; Ladley, Richard Porter; Chatman, Kelly; Mankin, Alexander S.; Polikanov, Yury S.; Myers, Andrew G. (2021). "A synthetic antibiotic class overcoming bacterial multidrug resistance". Nature. 599 (7885): 507–599. doi:10.1038/s41586-021-04045-6.
  3. Mitcheltree, Matthew J.; Pisipati, Amarnath; Syroegin, Egor A.; Silvestre, Katherine J.; Klepacki, Dorota; Mason, Jeremy D.; Terwilliger, Daniel W.; Testolin, Giambattista; Pote, Aditya R.; Wu, Kelvin J. Y.; Ladley, Richard Porter; Chatman, Kelly; Mankin, Alexander S.; Polikanov, Yury S.; Myers, Andrew G. (27 October 2021). "A synthetic antibiotic class overcoming bacterial multidrug resistance". Nature. doi:10.1038/s41586-021-04045-6. PMC   8549432 . PMID   34707295.
  4. "Bacterial drug resistance overcome by synthetic restructuring of antibiotics". Nature: d41586–021–02916-6. 27 October 2021. doi:10.1038/d41586-021-02916-6. PMID   34711985. S2CID   240153291.