Cresomycin

Last updated
Cresomycin
Cresomycin structure.svg
Identifiers
  • (4S,5aS,8S,8aR)-4-Isobutyl-N-([1R,7R,8R,9R,10R,11S,12R,Z]-10,11,12-trihydroxy-7-methyl-13-oxa-2-thiabicyclo[7.3.1]tridec-5-en-8-yl)octahydro-2H-oxepino[2,3-c]pyrrol-8-carboxamide
CAS Number
PubChem CID
PDB ligand
Chemical and physical data
Formula C25H42N2O6S
Molar mass 498.68 g·mol−1
3D model (JSmol)
  • CC(C)C[C@@H]1CCO[C@@H]2[C@H](CN[C@@H]2C(=O)N[C@@H]3[C@H](C)\C=C/CCS[C@H]4O[C@H]3[C@H](O)[C@H](O)[C@H]4O)C1
  • InChI=1S/C25H42N2O6S/c1-13(2)10-15-7-8-32-22-16(11-15)12-26-18(22)24(31)27-17-14(3)6-4-5-9-34-25-21(30)19(28)20(29)23(17)33-25/h4,6,13-23,25-26,28-30H,5,7-12H2,1-3H3,(H,27,31)/b6-4-/t14-,15+,16+,17-,18+,19+,20-,21-,22-,23-,25-/m1/s1
  • Key:GMONVEGLHZWYNO-JBYNEVPESA-N

Cresomycin is an experimental antibiotic. It binds to the bacterial ribosome in both Gram-negative and Gram-positive bacteria, and it has been found to be effective against multi-drug-resistant stains of Staphylococcus aureus, Escherichia coli , and Pseudomonas aeruginosa . [1] It belongs to the bridged macrobicyclic oxepanoprolinamide antibiotics, which have similarities with lincosamides antibiotics. [1]

Cresomycin has been specially designed to bind in a preorganised way with the bacterial ribosome, resulting to improved binding. This allows cresomycin to overcome the ribosomal methylase genes that are responsible for the bacterial resistance against other antibiotics that bind to the peptidyl transferase center of the ribosome, such as lincosamides. [1] Cresomycin was synthesized based on iboxamycin, another oxepanoprolinamide antibiotic, with the addition of a 10-membered ring to it. [2]

Cresomycin has been found to effective against bacteria that are resistant to multible antibiotics, including lincosamides, both in vitro and in vivo, being more potent than iboxamycin. [1] The antibiotic was found in time-kill studies to be bacteriostatic against S. aureus. In vitro safety experiments with human cells indicated low cytotoxicity. [1]

Cresomycin was developed by a research group led by Andrew G. Myers at the Harvard University Department of Chemistry and Chemical Biology and the University of Illinois at Chicago and received a fund from CARB-X for further development. [3] [4]

Related Research Articles

<span class="mw-page-title-main">Macrolide</span> Class of natural products

Macrolides are a class of mostly natural products with a large macrocyclic lactone ring to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. The lactone rings are usually 14-, 15-, or 16-membered. Macrolides belong to the polyketide class of natural products. Some macrolides have antibiotic or antifungal activity and are used as pharmaceutical drugs. Rapamycin is also a macrolide and was originally developed as an antifungal, but is now used as an immunosuppressant drug and is being investigated as a potential longevity therapeutic.

<span class="mw-page-title-main">Linezolid</span> Antibiotic medication

Linezolid is an antibiotic used for the treatment of infections caused by Gram-positive bacteria that are resistant to other antibiotics. Linezolid is active against most Gram-positive bacteria that cause disease, including streptococci, vancomycin-resistant enterococci (VRE), and methicillin-resistant Staphylococcus aureus (MRSA). The main uses are infections of the skin and pneumonia although it may be used for a variety of other infections including drug-resistant tuberculosis. It is used either by injection into a vein or by mouth.

<span class="mw-page-title-main">Methicillin</span> Antibiotic medication

Methicillin (USAN), also known as meticillin (INN), is a narrow-spectrum β-lactam antibiotic of the penicillin class.

<span class="mw-page-title-main">Aminoglycoside</span> Antibacterial drug

Aminoglycoside is a medicinal and bacteriologic category of traditional Gram-negative antibacterial medications that inhibit protein synthesis and contain as a portion of the molecule an amino-modified glycoside (sugar). The term can also refer more generally to any organic molecule that contains amino sugar substructures. Aminoglycoside antibiotics display bactericidal activity against Gram-negative aerobes and some anaerobic bacilli where resistance has not yet arisen but generally not against Gram-positive and anaerobic Gram-negative bacteria.

<span class="mw-page-title-main">Clindamycin</span> Antibiotic

Clindamycin is a lincosamide antibiotic medication used for the treatment of a number of bacterial infections, including osteomyelitis (bone) or joint infections, pelvic inflammatory disease, strep throat, pneumonia, acute otitis media, and endocarditis. It can also be used to treat acne, and some cases of methicillin-resistant Staphylococcus aureus (MRSA). In combination with quinine, it can be used to treat malaria. It is available by mouth, by injection into a vein, and as a cream or a gel to be applied to the skin or in the vagina.

<span class="mw-page-title-main">Fusidic acid</span> Antibiotic

Fusidic acid, sold under the brand names Fucidin among others, is a steroid antibiotic that is often used topically in creams or ointments and eyedrops but may also be given systemically as tablets or injections.
As of October 2008, the global problem of advancing antimicrobial resistance has led to a renewed interest in its use.

<span class="mw-page-title-main">Tigecycline</span> Chemical compound

Tigecycline, sold under the brand name Tygacil, is a tetracycline antibiotic medication for a number of bacterial infections. It is a glycylcycline class drug that is administered intravenously. It was developed in response to the growing rate of antibiotic resistant bacteria such as Staphylococcus aureus, Acinetobacter baumannii, and E. coli. As a tetracycline derivative antibiotic, its structural modifications has expanded its therapeutic activity to include Gram-positive and Gram-negative organisms, including those of multi-drug resistance.

Ampicillin/sulbactam is a fixed-dose combination medication of the common penicillin-derived antibiotic ampicillin and sulbactam, an inhibitor of bacterial beta-lactamase. Two different forms of the drug exist. The first, developed in 1987 and marketed in the United States under the brand name Unasyn, generic only outside the United States, is an intravenous antibiotic. The second, an oral form called sultamicillin, is marketed under the brand name Ampictam outside the United States, and generic only in the United States. Ampicillin/sulbactam is used to treat infections caused by bacteria resistant to beta-lactam antibiotics. Sulbactam blocks the enzyme which breaks down ampicillin and thereby allows ampicillin to attack and kill the bacteria.

Glycylcyclines are a class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance, namely resistance mediated by acquired efflux pumps and/or ribosomal protection. Presently, tigecycline is the only glycylcycline approved for antibiotic use.

<span class="mw-page-title-main">Lincosamides</span> Group of antibiotics

Lincosamides are a class of antibiotics, which include lincomycin, clindamycin, and pirlimycin.

<span class="mw-page-title-main">Tetracycline antibiotics</span> Type of broad-spectrum antibiotic

Tetracyclines are a group of broad-spectrum antibiotic compounds that have a common basic structure and are either isolated directly from several species of Streptomyces bacteria or produced semi-synthetically from those isolated compounds. Tetracycline molecules comprise a linear fused tetracyclic nucleus to which a variety of functional groups are attached. Tetracyclines are named after their four ("tetra-") hydrocarbon rings ("-cycl-") derivation ("-ine"). They are defined as a subclass of polyketides, having an octahydrotetracene-2-carboxamide skeleton and are known as derivatives of polycyclic naphthacene carboxamide. While all tetracyclines have a common structure, they differ from each other by the presence of chloro, methyl, and hydroxyl groups. These modifications do not change their broad antibacterial activity, but do affect pharmacological properties such as half-life and binding to proteins in serum.

<span class="mw-page-title-main">Dalfopristin</span> Chemical compound

Dalfopristin is a semi-synthetic streptogramin antibiotic analogue of ostreogyrcin A. The combination quinupristin/dalfopristin was brought to the market by Rhone-Poulenc Rorer Pharmaceuticals in 1999. Synercid is used to treat infections by staphylococci and by vancomycin-resistant Enterococcus faecium.

<span class="mw-page-title-main">Cefoxitin</span> Chemical compound

Cefoxitin is a second-generation cephamycin antibiotic developed by Merck & Co., Inc. from Cephamycin C in the year following its discovery, 1972. It was synthesized in order to create an antibiotic with a broader spectrum. It is often grouped with the second-generation cephalosporins. Cefoxitin requires a prescription and as of 2010 is sold under the brand name Mefoxin by Bioniche Pharma, LLC. The generic version of cefoxitin is known as cefoxitin sodium.

β-Lactamase inhibitor Family of enzymes

Beta-lactamases are a family of enzymes involved in bacterial resistance to beta-lactam antibiotics. In bacterial resistance to beta-lactam antibiotics, the bacteria have beta-lactamase which degrade the beta-lactam rings, rendering the antibiotic ineffective. However, with beta-lactamase inhibitors, these enzymes on the bacteria are inhibited, thus allowing the antibiotic to take effect. Strategies for combating this form of resistance have included the development of new beta-lactam antibiotics that are more resistant to cleavage and the development of the class of enzyme inhibitors called beta-lactamase inhibitors. Although β-lactamase inhibitors have little antibiotic activity of their own, they prevent bacterial degradation of beta-lactam antibiotics and thus extend the range of bacteria the drugs are effective against.

<span class="mw-page-title-main">Protein synthesis inhibitor</span> Inhibitors of translation

A protein synthesis inhibitor is a compound that stops or slows the growth or proliferation of cells by disrupting the processes that lead directly to the generation of new proteins.

<span class="mw-page-title-main">Arbekacin</span> Antibiotic

Arbekacin (INN) is a semisynthetic aminoglycoside antibiotic which was derived from kanamycin. It is primarily used for the treatment of infections caused by multi-resistant bacteria including methicillin-resistant Staphylococcus aureus (MRSA). Arbekacin was originally synthesized from dibekacin in 1973 by Hamao Umezawa and collaborators. It has been registered and marketed in Japan since 1990 under the trade name Habekacin. Arbekacin is no longer covered by patent and generic versions of the drug are also available under such trade names as Decontasin and Blubatosine.

Cephalosporins are a broad class of bactericidal antibiotics that include the β-lactam ring and share a structural similarity and mechanism of action with other β-lactam antibiotics. The cephalosporins have the ability to kill bacteria by inhibiting essential steps in the bacterial cell wall synthesis which in the end results in osmotic lysis and death of the bacterial cell. Cephalosporins are widely used antibiotics because of their clinical efficiency and desirable safety profile.

<span class="mw-page-title-main">Bottromycin</span> Chemical compound

Bottromycin is a macrocyclic peptide with antibiotic activity. It was first discovered in 1957 as a natural product isolated from Streptomyces bottropensis. It has been shown to inhibit methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) among other Gram-positive bacteria and mycoplasma. Bottromycin is structurally distinct from both vancomycin, a glycopeptide antibiotic, and methicillin, a beta-lactam antibiotic.

Odilorhabdins are a class of natural antibacterial agents produced by the bacterium Xenorhabdus nematophila. Odilorhabdins act against both Gram-positive and Gram-negative pathogens, and were shown to eliminate infections in mouse models.

<span class="mw-page-title-main">Iboxamycin</span> Chemical compound

Iboxamycin is a synthetic lincosamide or oxepanoprolinamide antibiotic. It binds to the bacterial ribosome in both Gram-negative and Gram-positive bacteria and it has been found to effective against bacteria which are resistant to other antibiotics that target the large ribosomal subunit. It was developed by combining an oxepanoproline unit with the aminooctose residue of clindamycin.

References

  1. 1 2 3 4 5 Wu KJ, Tresco BI, Ramkissoon A, Aleksandrova EV, Syroegin EA, See DN, et al. (February 2024). "An antibiotic preorganized for ribosomal binding overcomes antimicrobial resistance". Science. 383 (6684): 721–726. Bibcode:2024Sci...383..721W. doi:10.1126/science.adk8013. PMID   38359125. S2CID   267682504.
  2. Halford B (19 February 2024). "An antibiotic built for better binding". Chemical & Engineering News. Retrieved 21 February 2024.
  3. "Carb-X Funds the Myers Research Group to Develop Enhanced Oral Antibiotics to Treat a Range of Serious Drug-Resistant Bacterial Infections". CARB-X. 13 February 2024. Retrieved 20 February 2024.
  4. Purtill C (15 February 2024). "Could a single synthetic molecule outsmart a variety of drug-resistant bacteria?". Los Angeles Times. Retrieved 20 February 2024.