Dibekacin

Last updated
Dibekacin
Dibekacin.svg
Clinical data
Trade names Panimycin, Tokocin
Other names3',4'-Dideoxykanamycin B
AHFS/Drugs.com International Drug Names
ATC code
Identifiers
  • (2S,3R,4S,5S,6R)-4-Amino-2-[(1S,2S,3R,4S,6R)-4,6-diamino-3-[(2R,3R,6S)-3-amino-6-(aminomethyl)oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-6-(hydroxymethyl)oxane-3,5-diol
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEMBL
PDB ligand
CompTox Dashboard (EPA)
ECHA InfoCard 100.047.316 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C18H37N5O8
Molar mass 451.521 g·mol−1
3D model (JSmol)
  • C1C[C@H]([C@H](O[C@@H]1CN)O[C@@H]2[C@H](C[C@H]([C@@H]([C@H]2O)O[C@@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CO)O)N)O)N)N)N
  • InChI=1S/C18H37N5O8/c19-4-6-1-2-7(20)17(28-6)30-15-8(21)3-9(22)16(14(15)27)31-18-13(26)11(23)12(25)10(5-24)29-18/h6-18,24-27H,1-5,19-23H2/t6-,7+,8-,9+,10+,11-,12+,13+,14-,15+,16-,17+,18+/m0/s1
  • Key:JJCQSGDBDPYCEO-XVZSLQNASA-N

Dibekacin (3',4'-dideoxykanamycin B) is an aminoglycoside antibiotic. It is a semisynthetic derivative of kanamycin developed by Hamao Umezawa and collaborators for Meiji Seika. [1] [2]

It has been used in combination with sulbenicillin. [3]

Related Research Articles

<span class="mw-page-title-main">Biofilm</span> Aggregation of bacteria or cells on a surface

A biofilm is a syntrophic community of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular polymeric substances (EPSs). The cells within the biofilm produce the EPS components, which are typically a polymeric combination of extracellular polysaccharides, proteins, lipids and DNA. Because they have a three-dimensional structure and represent a community lifestyle for microorganisms, they have been metaphorically described as "cities for microbes".

<span class="mw-page-title-main">Cystic fibrosis</span> Genetic disorder affecting mostly the lungs

Cystic fibrosis (CF) is a genetic disorder inherited in an autosomal recessive manner that impairs the normal clearance of mucus from the lungs, which facilitates the colonization and infection of the lungs by bacteria, notably Staphylococcus aureus. CF is a rare genetic disorder that affects mostly the lungs, but also the pancreas, liver, kidneys, and intestine. The hallmark feature of CF is the accumulation of thick mucus in different organs. Long-term issues include difficulty breathing and coughing up mucus as a result of frequent lung infections. Other signs and symptoms may include sinus infections, poor growth, fatty stool, clubbing of the fingers and toes, and infertility in most males. Different people may have different degrees of symptoms.

<i>Pseudomonas</i> Genus of Gram-negative bacteria

Pseudomonas is a genus of Gram-negative bacteria belonging to the family Pseudomonadaceae in the class Gammaproteobacteria. The 313 members of the genus demonstrate a great deal of metabolic diversity and consequently are able to colonize a wide range of niches. Their ease of culture in vitro and availability of an increasing number of Pseudomonas strain genome sequences has made the genus an excellent focus for scientific research; the best studied species include P. aeruginosa in its role as an opportunistic human pathogen, the plant pathogen P. syringae, the soil bacterium P. putida, and the plant growth-promoting P. fluorescens, P. lini, P. migulae, and P. graminis.

<span class="mw-page-title-main">Phage therapy</span> Therapeutic use of bacteriophages to treat bacterial infections

Phage therapy, viral phage therapy, or phagotherapy is the therapeutic use of bacteriophages for the treatment of pathogenic bacterial infections. This therapeutic approach emerged at the beginning of the 20th century but was progressively replaced by the use of antibiotics in most parts of the world after the Second World War. Bacteriophages, known as phages, are a form of virus that attach to bacterial cells and inject their genome into the cell. The bacteria's production of the viral genome interferes with its ability to function, halting the bacterial infection. The bacterial cell causing the infection is unable to reproduce and instead produces additional phages. Phages are very selective in the strains of bacteria they are effective against.

<span class="mw-page-title-main">Kanamycin A</span> Antibiotic

Kanamycin A, often referred to simply as kanamycin, is an antibiotic used to treat severe bacterial infections and tuberculosis. It is not a first line treatment. It is used by mouth, injection into a vein, or injection into a muscle. Kanamycin is recommended for short-term use only, usually from 7 to 10 days. Since antibiotics only show activity against bacteria, it is ineffective in viral infections.

<i>Pseudomonas aeruginosa</i> Species of bacterium

Pseudomonas aeruginosa is a common encapsulated, Gram-negative, aerobic–facultatively anaerobic, rod-shaped bacterium that can cause disease in plants and animals, including humans. A species of considerable medical importance, P. aeruginosa is a multidrug resistant pathogen recognized for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its association with serious illnesses – hospital-acquired infections such as ventilator-associated pneumonia and various sepsis syndromes. P. aeruginosa is able to selectively inhibit various antibiotics from penetrating its outer membrane - and has high resistance to several antibiotics. According to the World Health Organization P. aeruginosa poses one of the greatest threats to humans in terms of antibiotic resistance.

<span class="mw-page-title-main">Carbapenem</span> Class of highly effective antibiotic agents

Carbapenems are a class of very effective antibiotic agents most commonly used for treatment of severe bacterial infections. This class of antibiotics is usually reserved for known or suspected multidrug-resistant (MDR) bacterial infections. Similar to penicillins and cephalosporins, carbapenems are members of the beta-lactam antibiotics drug class, which kill bacteria by binding to penicillin-binding proteins, thus inhibiting bacterial cell wall synthesis. However, these agents individually exhibit a broader spectrum of activity compared to most cephalosporins and penicillins. Furthermore, carbapenems are typically unaffected by emerging antibiotic resistance, even to other beta-lactams.

<span class="mw-page-title-main">Tobramycin</span> Chemical compound

Tobramycin is an aminoglycoside antibiotic derived from Streptomyces tenebrarius that is used to treat various types of bacterial infections, particularly Gram-negative infections. It is especially effective against species of Pseudomonas.

<span class="mw-page-title-main">Amikacin</span> Antibiotic medication

Amikacin is an antibiotic medication used for a number of bacterial infections. This includes joint infections, intra-abdominal infections, meningitis, pneumonia, sepsis, and urinary tract infections. It is also used for the treatment of multidrug-resistant tuberculosis. It is used by injection into a vein using an IV or into a muscle.

<i>Stenotrophomonas maltophilia</i> Species of bacterium

Stenotrophomonas maltophilia is an aerobic, nonfermentative, Gram-negative bacterium. It is an uncommon bacterium and human infection is difficult to treat. Initially classified as Bacterium bookeri, then renamed Pseudomonas maltophilia, S. maltophilia was also grouped in the genus Xanthomonas before eventually becoming the type species of the genus Stenotrophomonas in 1993.

<span class="mw-page-title-main">Filamentation</span> Type of bacteria growth

Filamentation is the anomalous growth of certain bacteria, such as Escherichia coli, in which cells continue to elongate but do not divide. The cells that result from elongation without division have multiple chromosomal copies.

<span class="mw-page-title-main">Swarming motility</span>

Swarming motility is a rapid and coordinated translocation of a bacterial population across solid or semi-solid surfaces, and is an example of bacterial multicellularity and swarm behaviour. Swarming motility was first reported by Jorgen Henrichsen and has been mostly studied in genus Serratia, Salmonella, Aeromonas, Bacillus, Yersinia, Pseudomonas, Proteus, Vibrio and Escherichia.

In enzymology, a gentamicin 2"-nucleotidyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Sulbenicillin</span> Chemical compound

Sulbenicillin (INN) is a penicillin antibiotic, notable for its combination use with dibekacin. Penicillins, crucial in primary healthcare for potent bactericidal properties and wide distribution, include oral options for enhanced accessibility. Post-World War II, synthetic penicillins like sulbenicillin broadened efficacy, leading to new groups that diversified treatment. This evolution reflects a dynamic interplay between science and clinical needs, emphasizing enduring value in managing infectious diseases in primary care.

<i>Pseudomonas</i> infection Medical condition

Pseudomonas infection refers to a disease caused by one of the species of the genus Pseudomonas.

<span class="mw-page-title-main">Arbekacin</span> Antibiotic

Arbekacin (INN) is a semisynthetic aminoglycoside antibiotic which was derived from kanamycin. It is primarily used for the treatment of infections caused by multi-resistant bacteria including methicillin-resistant Staphylococcus aureus (MRSA). Arbekacin was originally synthesized from dibekacin in 1973 by Hamao Umezawa and collaborators. It has been registered and marketed in Japan since 1990 under the trade name Habekacin. Arbekacin is no longer covered by patent and generic versions of the drug are also available under such trade names as Decontasin and Blubatosine.

<span class="mw-page-title-main">Pyocyanin</span> Chemical compound

Pyocyanin (PCN) is one of the many toxic compounds produced and secreted by the Gram negative bacterium Pseudomonas aeruginosa. Pyocyanin is a blue secondary metabolite, turning red below pH 4.9, with the ability to oxidise and reduce other molecules and therefore kill microbes competing against P. aeruginosa as well as mammalian cells of the lungs which P. aeruginosa has infected during cystic fibrosis. Since pyocyanin is a zwitterion at blood pH, it is easily able to cross the cell membrane. There are three different states in which pyocyanin can exist: oxidized (blue), monovalently reduced (colourless) or divalently reduced (red). Mitochondria play an important role in the cycling of pyocyanin between its redox states. Due to its redox-active properties, pyocyanin generates reactive oxygen species.

<span class="mw-page-title-main">Pseudomon-1 RNA motif</span>

The Pseudomon-1 RNA motif is a conserved RNA identified by bioinformatics. It is used by most species whose genomes have been sequenced and that are classified within the genus Pseudomonas, and is also present in Azotobacter vinelandii, a closely related species. It is presumed to function as a non-coding RNA. Pseudomon-1 RNAs consistently have a downstream rho-independent transcription terminator.

<span class="mw-page-title-main">Dopastin</span> Chemical compound

Dopastin is a chemical compound produced by the bacteria Pseudomonas No. BAC-125. It was first isolated and characterized in 1972. It is an inhibitor of the enzyme dopamine β-hydroxylase.

<span class="mw-page-title-main">Alain Filloux</span> French microbiologist

Alain Ange-Marie Filloux is a French/British microbiologist who is the centre director of the Singapore Centre for Environmental Life Sciences Engineering (SCELSE) and a Professor of Molecular Microbiology at Nanyang Technological University (NTU), Singapore. He holds joint appointments at both the School of Biological Sciences and the Lee Kong Chian School of Medicine at NTU. His research looks at the chronic infection of Pseudomonas aeruginosa, a Gram-negative bacterium that causes nosocomial infections in people who are immunocompromised and a deadly threat for cystic fibrosis patients. He is also a Visiting Professor at Imperial College London.

References

  1. Umezawa H, Umezawa S, Tsuchiya T, Okazaki Y (July 1971). "3',4'-Dideoxy-Kanamycin B Active Against Kanamycin-Resistant Escherichia coli and Pseudomonas aeruginosa". The Journal of Antibiotics. 24 (7): 485–487. doi: 10.7164/antibiotics.24.485 . PMID   4998037.
  2. Umezawa H (November 1982). "Découverte de la dibékacine et de ses aspects chimiques [Discovery of dibekacin and its chemical aspects]". La Nouvelle Presse Médicale. 11 (46): 3379–84. PMID   7155844.
  3. Aonuma S, Ariji F, Oizumi K, Konno K (June 1987). "Electron microscopy of Pseudomonas aeruginosa treated with sulbenicillin and dibekacin". Tohoku J. Exp. Med. 152 (2): 119–28. doi: 10.1620/tjem.152.119 . PMID   3114912.