Flurithromycin

Last updated
Flurithromycin
Flurithromycin.svg
Clinical data
ATC code
Identifiers
  • (3R,4S,5S,6R,7R,9S,11R,12R,13S,14R)-6-
    [(2S,3R,4S,6R)-4-dimethylamino-3-hydroxy-
    6-methyloxan-2-yl]oxy-14-ethyl-9-fluoro-7,12,
    13-trihydroxy-4-[(2R,4R,5S,6S)-5-hydroxy-
    4-methoxy-4,6-dimethyloxan-2-yl]oxy-3,5,7,9,
    11,13-hexamethyl-1-oxacyclotetradecane-2,10-dione
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.126.548 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C37H66FNO13
Molar mass 751.927 g·mol−1
3D model (JSmol)
  • O=C3O[C@H](CC)[C@](O)(C)[C@H](O)[C@H](C(=O)[C@](F)(C)C[C@](O)(C)[C@H](O[C@@H]1O[C@H](C)C[C@H](N(C)C)[C@H]1O)[C@H]([C@H](O[C@@H]2O[C@H]([C@H](O)[C@](OC)(C2)C)C)[C@H]3C)C)C
  • InChI=1S/C37H66FNO13/c1-14-24-37(10,46)29(42)21(5)28(41)34(7,38)17-35(8,45)31(52-33-26(40)23(39(11)12)15-18(2)48-33)19(3)27(20(4)32(44)50-24)51-25-16-36(9,47-13)30(43)22(6)49-25/h18-27,29-31,33,40,42-43,45-46H,14-17H2,1-13H3/t18-,19+,20-,21+,22+,23+,24-,25+,26-,27+,29-,30+,31-,33+,34+,35-,36-,37-/m1/s1 Yes check.svgY
  • Key:XOEUHCONYHZURQ-HNUBZJOYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Flurithromycin is a second generation macrolide antibiotic. It is a fluorinated derivative of erythromycin A. [1] It is a broad spectrum antibiotic with similar bactericidal action to erythromycin. Unlike erythromycin, flurithromycin is more tolerant of acidic environments, meaning more survives the digestion process, resulting in higher serum levels, and more efficacious elimination of susceptible bacteria, including staphylococcus aureus and streptococcus pyogenes. [2]

Related Research Articles

<span class="mw-page-title-main">Erythromycin</span> Chemical compound

Erythromycin is an antibiotic used for the treatment of a number of bacterial infections. This includes respiratory tract infections, skin infections, chlamydia infections, pelvic inflammatory disease, and syphilis. It may also be used during pregnancy to prevent Group B streptococcal infection in the newborn, as well as to improve delayed stomach emptying. It can be given intravenously and by mouth. An eye ointment is routinely recommended after delivery to prevent eye infections in the newborn.

<span class="mw-page-title-main">Macrolide</span> Class of natural products

The Macrolides are a class of natural products that consist of a large macrocyclic lactone ring to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. The lactone rings are usually 14-, 15-, or 16-membered. Macrolides belong to the polyketide class of natural products. Some macrolides have antibiotic or antifungal activity and are used as pharmaceutical drugs. Rapamycin is also a macrolide and was originally developed as an antifungal, but is now used as an immunosuppressant drug and is being investigated as a potential longevity therapeutic.

<span class="mw-page-title-main">Clarithromycin</span> Type of antibiotic

Clarithromycin, sold under the brand name Biaxin among others, is an antibiotic used to treat various bacterial infections. This includes strep throat, pneumonia, skin infections, H. pylori infection, and Lyme disease, among others. Clarithromycin can be taken by mouth as a pill or liquid.

<span class="mw-page-title-main">Clindamycin</span> Antibiotic

Clindamycin is an antibiotic medication used for the treatment of a number of bacterial infections, including osteomyelitis (bone) or joint infections, pelvic inflammatory disease, strep throat, pneumonia, acute otitis media, and endocarditis. It can also be used to treat acne, and some cases of methicillin-resistant Staphylococcus aureus (MRSA). In combination with quinine, it can be used to treat malaria. It is available by mouth, by injection into a vein, and as a cream or a gel to be applied to the skin or in the vagina.

<span class="mw-page-title-main">Roxithromycin</span> Chemical compound

Roxithromycin is a semi-synthetic macrolide antibiotic. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin is derived from erythromycin, containing the same 14-membered lactone ring. However, an N-oxime side chain is attached to the lactone ring. It is also currently undergoing clinical trials for the treatment of male-pattern hair loss.

<span class="mw-page-title-main">Ketolide</span>

Ketolides are antibiotics belonging to the macrolide group. Ketolides are derived from erythromycin by substituting the cladinose sugar with a keto-group and attaching a cyclic carbamate group in the lactone ring. These modifications give ketolides much broader spectrum than other macrolides. Moreover, ketolides are effective against macrolide-resistant bacteria, due to their ability to bind at two sites at the bacterial ribosome as well as having a structural modification that makes them poor substrates for efflux-pump mediated resistance.

<span class="mw-page-title-main">Telithromycin</span> Chemical compound

Telithromycin is the first ketolide antibiotic to enter clinical use and is sold under the brand name of Ketek. It is used to treat community acquired pneumonia of mild to moderate severity. After significant safety concerns, the US Food and Drug Administration sharply curtailed the approved uses of the drug in early 2007.

<span class="mw-page-title-main">Lincosamides</span>

Lincosamides are a class of antibiotics, which include lincomycin, clindamycin, and pirlimycin.

<span class="mw-page-title-main">Pristinamycin</span> Group of chemical compounds

Pristinamycin (INN), also spelled pristinamycine, is an antibiotic used primarily in the treatment of staphylococcal infections, and to a lesser extent streptococcal infections. It is a streptogramin group antibiotic, similar to virginiamycin, derived from the bacterium Streptomyces pristinaespiralis. It is marketed in Europe by Sanofi-Aventis under the trade name Pyostacine.

Erythromycin/isotretinoin is a topical gel with two active ingredients: erythromycin 2% w/w and isotretinoin 0.05% w/w with a primary indication for the treatment of moderate acne vulgaris.

<span class="mw-page-title-main">Azalide</span> Class of chemical compounds

Azalides such as azithromycin are a class of macrolide antibiotics that were originally manufactured in response to the poor acid stability exhibited by original macrolides (erythromycin). Following the clinical overuse of macrolides and azalides, ketolides have been developed to combat surfacing macrolide-azalide resistance among streptococci species. Azalides have several advantages over erythromycin such as more potent gram negative antimicrobial activity, acid stability, and side effect tolerability. Although there are few drug interactions with azithromycin, it weakly inhibits the CYP4A4 enzyme.

<span class="mw-page-title-main">Oleandomycin</span> Chemical compound

Oleandomycin is a macrolide antibiotic. It is synthesized from strains of Streptomyces antibioticus. It is weaker than erythromycin.

<span class="mw-page-title-main">Spiramycin</span> Chemical compound

Spiramycin is a macrolide antibiotic and antiparasitic. It is used to treat toxoplasmosis and various other infections of soft tissues. Although used in Europe, Canada and Mexico, spiramycin is still considered an experimental drug in the United States, but can sometimes be obtained by special permission from the FDA for toxoplasmosis in the first trimester of pregnancy. Another treatment option are a combination of pyrimethamine and sulfadiazine.

In enzymology, an erythronolide synthase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Desosamine</span> Chemical compound

Desosamine is a 3-(dimethylamino)-3,4,6-trideoxyhexose found in certain macrolide antibiotics such as the commonly prescribed erythromycin, azithromycin, clarithroymcin, methymycin, narbomycin, oleandomycin, picromycin and roxithromycin. As the name suggests, these macrolide antibiotics contain a macrolide or lactone ring and they are attached to the ring Desosamine which is crucial for bactericidal activity. The biological action of the desosamine-based macrolide antibiotics is to inhibit the bacterial ribosomal protein synthesis. These antibiotics which contain Desosamine are widely used to cure bacterial-causing infections in human respiratory system, skin, muscle tissues, and urethra.

<span class="mw-page-title-main">Diffuse panbronchiolitis</span> Inflammatory lung disease

Diffuse panbronchiolitis (DPB) is an inflammatory lung disease of unknown cause. It is a severe, progressive form of bronchiolitis, an inflammatory condition of the bronchioles. The term diffuse signifies that lesions appear throughout both lungs, while panbronchiolitis refers to inflammation found in all layers of the respiratory bronchioles. DPB causes severe inflammation and nodule-like lesions of terminal bronchioles, chronic sinusitis, and intense coughing with large amounts of sputum production.

<span class="mw-page-title-main">Ramoplanin</span> Antibiotic chemical

Ramoplanin (INN) is a glycolipodepsipeptide antibiotic drug derived from strain ATCC 33076 of Actinoplanes. It is effective against Gram-positive bacteria.

<i>Saccharopolyspora erythraea</i> Species of bacterium

Saccharopolyspora erythraea is a species of actinomycete bacteria within the genus Saccharopolyspora.

6-deoxyerythronolide B hydroxylase is an Actinomycetota Cytochrome P450 enzyme originally from Saccharopolyspora erythraea, catalyzes the 6S-hydroxylate of 6-deoxyerythronolide B (6-DEB) to erythronolide B (EB) which is the first step of biosynthesis of the macrolide antibiotic erythromycin. This bacterial enzyme belongs to CYP family CYP107, with the CYP Symbol CYP107A1.

<span class="mw-page-title-main">Carbomycin</span> Chemical compound

Carbomycin, also known as magnamycin, is a colorless, optically active crystalline macrolide antibiotic with the molecular formula C42H67NO16. It is derived from the bacterium Streptomyces halstedii and active in inhibiting the growth of Gram-positive bacteria and "certain Mycoplasma strains." Its structure was first proposed by Robert Woodward in 1957 and was subsequently corrected in 1965.

References

  1. Gialdroni Grassi G, Alesina R, Bersani C, Ferrara A, Fietta A, Peona V (June 1986). "In vitro activity of flurithromycin, a novel macrolide antibiotic". Chemioterapia: International Journal of the Mediterranean Society of Chemotherapy. 5 (3): 177–84. PMID   3487389.
  2. Kaneko, T.; Dougherty, T. J.; Magee, T. V. (2007-01-01), Taylor, John B.; Triggle, David J. (eds.), "7.18 - Macrolide Antibiotics", Comprehensive Medicinal Chemistry II, Oxford: Elsevier, pp. 519–566, doi:10.1016/b0-08-045044-x/00219-4, ISBN   978-0-08-045044-5 , retrieved 2022-08-03